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Disclaimer 

All notes were organized based on the 2022/2023 lessons (considering they are almost identical, also 
the ones from this year 2023/2024 to following I think there will be minimal changes in the future) and 
all existing notes files. I tried my best with each, providing precision and refinements over contents, 

just to give you the clearest idea possible over everything. 

Also, the idea of this file is to have a complete reference with which to follow the entire course, even 
listening, in classes and to use it as a more in-depth approach to the whole thing. This follows an 

historical order, so you will find subsections dedicated to exercises in the same chapter they were 
originally intended inside this year’s lessons.  

Basically, formatting and everything is basically copied from lessons, rework of existing notes files, 
the CLRS book of Algorithms and other online resources, presented to you in a complete way – to 

make it simple, possibly for real. All of the exercises from classes are present and complete 
explanations are offered, often with examples, to be absolutely complete.  

The professor is really good (but long and boring, I have to say) and from a pure computer scientist 
view it’s great in my opinion, abstraction but pretty much following the literature in the field, starting of 

course from the quoted CRLS book we all know and (not) love. Hope this can be useful and do not 
hesitate to reach me to give me feedback over its content. Also to thank me, it doesn’t kill me that 

much.   
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2 COURSE PRESENTATION 

(Usual general fluff, then the lectures will be present. This is the only slides-based part, found here) 

Algorithms have a general motivation: create a network of knowledge and allow, with pacing of times, 
different development and stories creation, while crafting new solutions. We might define them as a 
sequence of steps to solve the most mundane problems but also really complex ones. 

There are different kinds of applications: 

- Network routing 
- Bioinformatics 
- Economics (e.g., game theory) 
- Fluid dynamics 
- Data mining 
- Cryptography 
- Machine learning 

The point is this: even when making interviews, algorithms are both the logic and the solution to 
current problems, thinking repeatedly and abstractly in a concrete (and fast) way. Historically, there 
are still a lot of unsolved or still not found problems. That’s why the course is mandatory. 

There are also different goals, wanting to introduce advanced principles of algorithm design and 
analysis. In particular, you’ll learn how to:  

- Design algorithms for complex domains such as graphs  
- Recognize “hard” problems and address them using approximation algorithms 
- Use the power of randomness to design fast algorithms  

o and analyze them with appropriate mathematical tools 

The contents of the course will be the following: 

- (Basic) Graph algorithms  
o Graph search and its applications, minimum spanning trees, shortest paths, maximum 

flows 2 Approximation algorithms 
- Intractable problems (not solvable in a reasonable amount of time) 

o NP-hardness and reductions between problems 
o Approximation algorithms for intractable problems  

▪ such as vertex cover, set cover, and the traveling salesperson problem  
- Randomized algorithms 

o Main design techniques and analysis tools 
▪ with applications to problems such as sorting and minimum cuts 

Although there are no formal prerequisites, an undergraduate course in algorithms and a good 
knowledge of (discrete) probability are assumed. Specifically, you should be familiar with:  

- Algorithm design techniques: divide and conquer, greedy, dynamic programming  
- Data structures: lists, stacks, queues, binary trees, search trees, heaps  
- Probability: basic notions, discrete random variables 

https://stem.elearning.unipd.it/pluginfile.php/625081/course/section/70344/Advanced%20Algorithms%20-%20Spring%202024.pdf
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We want to discuss the intuition behind formulating algorithms and distill the core ideas making the 
algorithms work. Because we are computer scientists, we want to give rigorousness: algorithms 
without proofs are just conjecture and proofs give math logic to those.  

We’ll follow, in part, an “active learning” approach:  

• Will foster and encourage interaction during class 
• Will frequently conclude class with 1-2 exercises  

o Whose solution will be shown only at the beginning of next class  
• Will frequently post on Moodle further readings 

o News/surveys/research articles/videos related to the topics covered in class  
• There is no lab or coding assignments 

o But you are encouraged to code your favorite algorithms up and run them on real data 

If you read until here, you sure wanna know: how is the exam? 

• Written test, 2 hours. It consists of:  
o 3 questions 

▪ Theory questions on the topics covered in class 
▪ Aimed at verifying the student’s knowledge of the contents of the course 

o 2 problems 
▪ Problems whose solution requires some creativity 
▪ Aimed at verifying the student’s ability to use concepts 
▪ Techniques learned during the course to solve new problems 

Some more concrete advice: study very well the program of this course; this first graphs part is more 
of understanding the general rules, focus more on approximation algorithms and Chernoff bounds.  

See exams for more and understand yourself the concepts; sometimes he puts concepts he thinks 
they are easy, or variants of proofs seen during the course in a slightly different way, because he 
expects you to know exactly the contents of the course, he has no reality grasp on how easy/difficult 
concepts are. In any case, I told you. 

2.1 ACTUAL COURSE PROGRAM 
 
As of 2023/2024 program, these are the lessons. This is made for you in order to be organized with the 
whole course content: 

- Lecture 1 + further reading 
o Course presentation 
o Graphs: the basics 

 
- Lecture 2 

o Graph search and its applications: Depth-First Search, with applications to finding 
spanning trees, paths, and cycles 
 

  



7  Advanced Algorithms Simple (for real) 
 

Written by Gabriel R. 

- Lecture 3 + further reading 
o More applications of DFS: connectivity and connected components 
o Breadth-First Search, with application to shortest paths 

 
- Lecture 4 

o Minimum spanning trees: a generic algorithm and its correctness 
o Minimum spanning trees: Prim's algorithm 

 
- Lecture 5 

o Minimum spanning trees: Prim's algorithm implemented with heaps 
o Minimum spanning trees: Kruskal's algorithm 

 
- Lecture 6 + further reading 

o The Union-Find data structure 
o Minimum spanning trees: Kruskal's algorithm implemented with Union-Find 

 
- Lecture 7 

o Single-source shortest paths: Dijkstra's algorithm 
 

- Lecture 8 + further reading 
o Single-source shortest paths: the Bellman-Ford algorithm 

 
- Lecture 9 

o All-pairs shortest paths: the Floyd–Warshall algorithm 
 

- Lecture 10 + further reading 
o Maximum flows: the Ford-Fulkerson algorithm 

 
- Lecture 11 

o Complexity classes P and NP 
o NP-hardness and reductions 

 
- Lecture 12 + further reading 

o NP-hardness reductions 
 

- Lecture 13 
o Approximation algorithms 
o Vertex cover: a 2-approximation algorithm 

 
- Lecture 14 + further reading 

o The traveling salesperson problem (TSP): inapproximability & special case metric TSP 
 

- Lecture 15 
o Metric TSP: a 2-approximation algorithm 

 
 



8  Advanced Algorithms Simple (for real) 
 

Written by Gabriel R. 

- Lecture 16 + further reading 
o Metric TSP: a 3/2-approximation algorithm 

 
- Lecture 17 

o Set cover: an O(log n)-approximation algorithm 
 

- Lecture 18 
o Randomized algorithms: motivation and basic notions 

 
- Lecture 19 

o Markov inequalities and their implications 
o Minimum cuts: Karger's algorithm 

 
- Lecture 20 

o Analysis of Karger's algorithm 
 

- Lecture 21 
o Chernoff bounds 
o Applications of Chernoff bounds: coin flips 

 
- Lecture 22 

o Applications of Chernoff bounds: analysis in high probability of Randomized Quicksort 
 

- Lecture 23 
o Applications of Chernoff bounds: exit polls and load balancing 

 
- Lecture 24 

o Exercises 
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3 1ST PART OF THE COURSE - GRAPHS 

(Suggested readings: The Algorithm, idiom of modern science [here]) 

A graph is a repartition of the relationships between pairs of objects. In particular, we note: 

• 𝐺 = (𝑉, 𝐸) as the graph itself 
o 𝑉 = set of vertices (a.k.a nodes) 
o 𝐸 ⊆ 𝑉 𝑥 𝑉 (cartesian product = all) is a collection of edges 

▪ An edge is a pair of vertices (𝑢, 𝑣) 
• It indicates the connection between two nodes 
• A connection of vertices allows for repetition 

In the following drawings, we find: 

• Directed graphs, which happens if (𝑢, 𝑣) ≠ (𝑣, 𝑢) 
• Undirected graphs, which happens if (𝑢, 𝑣) = (𝑣, 𝑢) 
• Arc = edge inside directed graphs (also called directed edges)  

 

In this case, we’ll (mostly) use simple graphs, meaning: 

• No parallel edges 
• No self-loops 

3.1 TERMINOLOGY AND CONCEPTS 
 
We give some terminology: 

• Given an edge 𝑒 = (𝑢, 𝑣) 
o 𝑒 is incident on 𝑢 and 𝑣 (happens if vertex if one of endpoints in that edge) 
o 𝑢 and 𝑣 are adjacent (there is an edge between the two vertices) 

• Neighbors of a vertex 𝑣: all vertices 𝑣 s.t. (𝑢, 𝑣) ∈ 𝐸 
o all vertices directly connected to a given vertex by an edge 

• Degree of a vertex 𝑣, denoted as 𝑑(𝑣) or 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) 
o the number of edges incident on 𝑣 

In many ways, graphs are the main modality of data we receive from nature and here we give some 
examples from nature: 

• Road networks → (cities, roads) 
• Computer networks → (computers, connections) 

https://www.cs.princeton.edu/~chazelle/pubs/algorithm.html
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• World Wide Web (WWW) → (webpages, hyperlinks) 
• Social networks (people, friendship relationships) 
• Biological networks 

o e.g., molecules (atoms, chemical bonds) 
o e.g., brain (neurons, synapses) 

• Finance → (accounts, transactions) 

We give some concepts also: 

• Path: 𝑢1, 𝑢2…𝑢𝑘 and (𝑢𝑖, 𝑢𝑖+1) ∈ 𝐸, ∀ 1 ≤ 𝑖 ≤ 𝑘 
o finite/infinite sequence of nodes which joins a sequence of vertices via edges 

• Simple path: 𝑢𝑖 (all vertices) are all distinct 
o same definition as above and vertices/nodes are all distinct/so are the edges 
o e.g., 5,1,8,7,6,1,4 has 1 repeated twice so it’s not simple 

• Cycle: simple path s.t. 𝑢1 = 𝑢𝑘 (starts from a given vertex/ends at same node) 
• Subgraph: 𝐺′ = (𝑉′, 𝐸′) 𝑠. 𝑡. 

o 𝑉′ ⊆ 𝑉 
o 𝐸′ ⊆ 𝐸 
o the edges of 𝐸′ are incident only on vertices of 𝑉′ 
o in words: it is a subset of the larger original graph 

• Spanning subgraph: a subgraph with 𝑉′ = 𝑉 
o a subgraph which “spans” the original graph (so there are all the vertices) 
o following other definitions 

▪ subgraph obtained by edge deletions only but retaining all vertices 
▪ so it’s a subgraph of 𝐺 with same vertex set as 𝐺 

• Connected graph: if ∀𝑢, 𝑣 ∈ 𝑉, ∃ a path from 𝑢 to 𝑣 
• Connected components: a partition of 𝐺 in subgraphs 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖), ∀ 1 ≤ 𝑖 ≤ 𝑘 𝑠. 𝑡. 

o 𝐺𝑖  is connected ∀𝑖 
o 𝑉 = 𝑉1 ∪ 𝑉2 ∪ …∪ 𝑉𝑘 
o 𝐸 = 𝐸1 ∪ 𝐸2 ∪ …∪ 𝐸𝑘 
o ∀𝑖 ≠ 𝑗 there is no edge between 𝑉𝑖 and 𝑉𝑗 

 

 

 

 

 
• Tree: connected graph without cycles 

o any two vertices are connected by exactly one path  
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There is also the concept of rooted tree:  

• There is a root 𝑟 ∈ 𝑉 
• There is a father for each non-root node and each node is directly 

linked to the father 
o ∀𝑢 ∈ 𝑉, 𝑢 ≠ 𝑟, ∃! 𝑝(𝑢) 

• Going father to father, we reach 𝑟 

Continuing with definitions: 

• Forest: set of trees (disjoint)  
o also = undirected graph in which any two vertices are connected by at most one path 

 
• Spanning tree: a connected and acyclic spanning subgraph  

 

 

 
• Spanning forest: a spanning subgraph without cycles 

 

 
 

3.2 BASIC PROBLEMS, NOTATIONS AND PROPERTIES 
 
There are different basic problems: 

• Traversal (systematic exploring of graph e.g., crawling) 
• Connectivity (tell if the graph is connected or not e.g., wireless networks) 
• Computing connected components (e.g., wireless networks) 
• (Minimum) spanning trees (e.g., efficient broadcasting in wireless networks) 
• Minimum-weight spanning trees (e.g., navigator) 
• Shortest paths (e.g., social media friend analysis or navigation systems) 

Also consider some notations and properties: 

• 𝑛 = |𝑉| (number of nodes) 
• 𝑚 = |𝐸| (number of edges) 

o Note: the book uses only |𝑉| and |𝐸| 
• Size of a graph is 𝑛 +𝑚 

o 𝑚 is not enough (normally online you would find the size it’s |𝐸| = count of edges) 
o Consider a scenario of a graph with 𝑛 vertices and no edges 
o The size of graph would be 𝑛 but we don’t consider vertices 

▪ we are accounting for both the “space” and the “connections” occupied  
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3.2.1 Exercises 

 
Exercise (Properties of graphs) 

Let 𝐺 = (𝑉, 𝐸) be a simple, connected graph with 𝑛 vertices and 𝑚 edges. Then: 

1) ∑ 𝑑(𝑣) = 2𝑚𝑣∈𝑉  
2) 𝑚 ≤ (𝑛

2
) 

3) 𝐺 is a tree ⇒ 𝑚 = 𝑛 − 1 
4) 𝐺 is connected ⇒ 𝑚 ≥ 𝑛 − 1 
5) 𝐺 is acyclic (i.e., is a forest) ⇒ 𝑚 ≤ 𝑛 − 1 

Prove the previous properties.  

Solution (Note: the professor is lapidary in his solutions, which I hate – so, apart from his official 
solution, past years explanations plus general theory is incorporated to give more precision to proofs) 

1) In the summation, every edge is counted exactly twice 
a. This is a famous result, called “handshaking lemma” 

 

2) In a simple graph, there are (𝑛
2
) possible pairs of vertices. Specifically, 𝑚 ≤ (𝑛

2
) =

𝑛(𝑛−1)

2
 

 
3) Fix a root on a vertex (so, consider 𝐺 as rooted tree, thanks to the equivalence between rooted 

tree and “free” tree). Then 𝐸 represent father-child relationships, which are 𝑛 − 1 (which 
means each non-root node has a unique father), because one parent for each 𝑢 ≠ 2 root 
(given 𝐸 = {(𝑢, 𝑝(𝑢)) | 𝑢 ≠ 𝑟}) has no parent |𝐸| = 𝑛 − 1 
 

4) 𝐺 is a tree that may have cycles ⇒ it can only have more edges than a tree 
a. Consider connectivity removes edges and keeps the graph connected without cycles, 

thanks to 𝑛 − 1 edges 
 

b. Alternatively, consider the following loop: 
 
while ∃ 𝑙𝑜𝑜𝑝 𝐶: do  
 𝑟𝑒𝑚𝑜𝑣𝑒 𝑜𝑛𝑒 𝑒𝑑𝑔𝑒 𝑜𝑓 𝐶 𝑓𝑟𝑜𝑚 𝐺 
end while  
 
So, here: 𝐺 is connected after each iteration and at the end of the while, 𝐺 is acyclic 
and connected → 𝐺 is a tree → 𝑚′ = 𝑛 − 1 ≤ 𝑛 

 
5) 𝐺 is a tree that may not be connected ⇒ it can only have less edges than a tree 

a. If it is a tree without cycles, it is a forest, and its maximum edges are 𝑛 − 1 

Completely: 

𝐺 is a made of 𝑘 ≥ 1 trees, the 𝑖𝑡ℎ tree has 𝑛𝑖 nodes and 𝑚𝑖 edges, with 𝑛 = ∑ 𝑛𝑖
𝑘
𝑖=1 , 𝑚𝑖 = 𝑛1 − 1 and 

𝑚 = ∑ 𝑚𝑖 = ∑ (𝑢𝑖 − 1) = 𝑛 − 𝑘 ≤ 𝑛 − 1
𝑘
𝑖=1 .𝑘

𝑖=1  
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3.3 REPRESENTING A GRAPH 
 
How to encode a graph for use in an algorithm? 

Consider a list of vertices 𝐿𝑉 and a list of edges 𝐿𝐸. (they contain all information about 𝐸 and 𝑉 and the 
links between each other). Let’s consider vertices are called 1, 2, … 𝑛. This is useful but does not allow 
for fast algorithms overall. Here we have examples of both pointers: 

 

 

 

 

 

 

To allow for direct access to edges, one of the following data structures are used, in addition to 
pointers to 𝐿𝑉 , 𝐿𝐸: 

• Adjacency list  
o An array 𝐴 of 𝑛 lists, one ∀ vertex 𝑣 ∈ 𝑉 (consider the example below) 
o Each containing all the vertices adjacent to 𝑣 (represented by table below) 

 

 

 

 

 

  

 
 
 

What if directed? Only vertices pointed for that vertex.  

• Pro:  
o Space usage 𝜃(𝑛 +𝑚) i.e. linear in the size of the graph 

• Con: 
o No quick way to determine if a given edge is in the graph 

 

  

1 2,5 
2 1,3,4,5 
3 2,4 
4 2,5,3 
5 4,1,2 
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• Adjacency matrix 

o A 𝑛 × 𝑛 matrix 𝐴 s.t. 𝐴[𝑖, 𝑗] = {1,    𝑖𝑓 𝑒𝑑𝑔𝑒 
(𝑖, 𝑗) ∈ 𝐸

0,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

 

 

 
 

 

 

 

 

• If graph is directed → the matrix is asymmetric 
• If graph is undirected → the matrix is symmetric 

o Edges are bidirectional → only half of matrix needs to be stored  
o Operations for this kind of matrix are more efficient in general 

In case of a weighted graph, each cell of the matrix has either the value of the edge weight (as number) 
𝑤 or −/𝑛𝑢𝑙𝑙 to represent null costs. This kind of graph represents costs, capacities, etc.  

• Pro:  
o Quick to determine if a given edge is present 

• Con:  
o Space required is 𝜃(𝑛2) → can be superlinear in the input size 
o if number of vertices increases, the space required by matrix grows quadratically 

It may also depend on the number of edges: 

• Dense graph = number of edges close to maximal number → 𝑚 = 𝑂(𝑛2) 
o many cells inside adjacency matrix will be populated by non-zero values 
o adjacency matrix is mostly used here 

▪ allows to quickly test the presence of an edge and check its info 
• Sparse graph = number of edges with only a few edges → 𝑚 = 𝑂(𝑛) 

o conversely, majority of values will be zero 
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3.4 GRAPHS ALGORITHMS 
 
We are focusing over graph search and its applications, in particular traversal/exploration. They 
provide a systematic way to explore a graph starting from a vertex 𝑠 ∈ 𝑉 (𝑠 = source vertex) visiting all 
the vertices (starting from a graph and a source vertex) – basically design patterns to solve specific 
problems.  

Even using only the lists 𝐿𝑉 and 𝐿𝐸, we explore the full graph and given this is not systematic, the 
exploring is not exploitable to solve problems.  

The most famous algorithms are: 

• Depth-First Search (DFS) → aggressive, goes in depth, then comes back and so forth 
• Breadth-First Search (BFS) → non-aggressive, proceeding by levels inside graph 

In particular, consider the following graphs; in each, the types of visits are defined already in color. 

 

 

 

 

 
 
Observe that: 

• DFS and BFS serve as design patterns, acting as building blocks  
o where the visit operation can be instantiated to solve specific problems  
o such as connectivity and spanning tree identification 

• Traversing 𝐿𝑉 and 𝐿𝐸  lists also achieves complete graph exploration 
o however, the lack of systematic exploration makes it less useful for problem-solving 

• The idea behind both is to prioritize visiting neighbors with lower IDs from the starting vertex 

3.4.1 Depth-First Search (DFS) 

 
(Further readings for this one: paper and survey) 

This is a recursive algorithm which: 

• Starting from a source 𝑠 ∈ 𝑉 “visits” all vertices of the connected component 𝐶𝑆 ⊆ 𝐺 
containing 𝑠 

• Uses adjacency list as graph representation 
• Every vertex 𝑣 has a field 𝐿𝑣[𝑣]. 𝐼𝐷 which can be either 

o 1 if visited 
o 0 otherwise 

• Every edge 𝑒 has a label 𝐿𝐸[𝑒]. 𝐿𝑎𝑏𝑒𝑙 which can be either 
o 𝑛𝑢𝑙𝑙 initially 

 

https://stem.elearning.unipd.it/pluginfile.php/749331/mod_folder/intro/Depth-First%20Search%20and%20Linear%20Graph%20Algorithms%20-%20Tarjan%20%281972%29.pdf
https://arxiv.org/abs/2201.07197
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o 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 𝐸𝐷𝐺𝐸 or 𝐵𝐴𝐶𝐾 𝐸𝐷𝐺𝐸 
▪ first label indicates an edge which allows discovery of vertices 
▪ second label indicates non-tree edges  

• that go from a node 𝑢 in the DFS tree  
• to some ancestor 𝑤 of 𝑢 in the DFS tree 
• this kind of edges is useful in order to find cycles 

• In all moments when executing the algorithm, vertex 𝑢 is discoverable from a vertex 𝑣 if there 
exists a path from 𝑣 to 𝑢 made of not-yet-visited vertices 

Consider the following procedure (works for both directed and undirected graphs): 

procedure 𝐷𝐹𝑆(𝐺, 𝑉)    (first invoke: 𝑣 = 𝑠 → source vertex) 

𝑣𝑖𝑠𝑖𝑡 𝑣  

𝐿𝑉[𝑣]. 𝐼𝐷 = 1  

for all 𝑒 ∈ 𝐺. 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠(𝑣): do  

 if 𝐿𝐸(𝑒). 𝑙𝑎𝑏𝑒𝑙 = 𝑛𝑢𝑙𝑙 then 

  𝑤 = 𝐺. 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒(𝑣, 𝑒) 

  if 𝐿𝑉[𝑤]. 𝐼𝐷 = 0 then 

   𝐿𝐸[𝑒]. 𝑙𝑎𝑏𝑒𝑙 = 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 𝐸𝐷𝐺𝐸 

   𝐷𝐹𝑆(𝐺,𝑤) 

 else 

  𝐿𝐸[𝑒]. 𝑙𝑎𝑏𝑒𝑙 = 𝐵𝐴𝐶𝐾 𝐸𝐷𝐺𝐸 

Because I like people understanding stuff, let’s comment human-like this code, considering we: 

• Take each vertex and we see if it was visited or not 
o this is done on the connected component touching all vertices and edges 
o we use adjacency lists to induce an order of visit in neighbors 

• Check if the current vertex (with ID field) has been visited or not 
• Loop on all edges incident to current vertex – iterator of the neighbors of 𝑣 
• Check if label of current edge was not labeled = it was not explored 
• Consider the opposite vertex = other endpoint of the edge 
• If that opposite vertex has not been visited yet 

o edge leads to an unexplored vertex, indicating a discovery edge 
▪ a vertex is discoverable if there exists a path between 𝑢 and 𝑣 not visited 

o this will be labeled, indicating it’s the first time the edge is being traversed 
o then we recursively call the algorithm to explore the connected component 

• Else (aka it was already visited) 
o the edge is leading to an already explored vertex 
o the edge is labeled indicating a connection back to the ancestor 
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The following is an example of the algorithm being applied:  

 

 

 

 

 

To be complete: 

   

3.4.1.1 Correctness 

 
At the end of the algorithm: 

1) all the vertices of 𝐶𝑠 have been visited and all the edges in 𝐶𝑠 are labelled either 
𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌/𝐵𝐴𝐶𝐾 𝐸𝐷𝐺𝐸𝑆 

2) the set of 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 𝐸𝐷𝐺𝐸𝑆 is a spanning tree 𝑇 of 𝐶𝑠 called “DFS tree” 

Proof: 

1) (short: by construction) 
By contradiction, ∃𝑣 ∈ 𝐶𝑠 not visited. Since 𝐶𝑠 is connected, there is a path from 𝑠 to 𝑢 

𝑠 = 𝑢0 → 𝑢1 → 𝑢2, … , 𝑢𝑘 = 𝑢. Let 𝑢𝑖 be the first unvisited vertex in the path (𝑢𝑗 ∈ 𝐶𝑠 ∀𝑗) 

We run into the contradiction: 𝐷𝐹𝑆(𝐺, 𝑢𝑖−1) must have been executed and therefore 
𝐷𝐹𝑆(𝐺, 𝑢𝑖) is called (meaning 𝑢𝑖 was found not visited). This happens in contradiction to the 
hypothesis (it’s not possible to find a vertex unvisited and marked as such). 

A vertex 𝑢 is visited only when 𝐷𝐹𝑆(𝐺, 𝑢) is invoked ⇒ DFS is called ∀𝑣 ∈ 𝐶𝑠 ⇒ all incident 
edges on 𝑣 are labelled, by construction. 
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2) DFS is called ∀𝑣 ∈ 𝐶𝑠, once, and ∀𝑣 ≠ 𝑠, ∃ a vertex 𝑢 s.t. (𝑢, 𝑣) ∃ and is labelled 
𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 𝐸𝐷𝐺𝐸 and 𝐷𝐹𝑆(𝐺, 𝑣) is invoked from 𝐷𝐹𝑆(𝐺, 𝑢). We say that 𝑣 gets “discovered” 
by 𝑢 and let’s call 𝑢 “father” of 𝑣 ⇒ ∀𝑣 ∈ 𝐶𝑠 , 𝑣 ≠ 𝑠 

a. ∃! father (there exists a father and it is unique) 
b. going back father to father eventually 𝑠 is reached 

Then, the set of 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 𝐸𝐷𝐺𝐸𝑆 is a rooted tree that touches all the vertices of 𝐶𝑠 and it’s a 
spanning tree of 𝐶𝑠 (unique path from every vertex to the source one and each is discovered by 
exactly one parent vertex). 

3.4.1.2 Complexity 

 
Given: 

• 𝑛𝑠: number of vertices of 𝐶𝑠 (one invocation ∀𝑣 ∈ 𝐶𝑠) 
• 𝑚𝑠: number of edges of 𝐶𝑠 (costs related to node, excluding recursive invocations inside) 

The complexity overall is: 

𝜃 (∑ 𝑑(𝑣)

𝑣∈𝐶𝑠

) = 𝜃(𝑚𝑠) 

(sum of degrees of each node proportional to number of edges) 

Remark: Note that 𝐶𝑠 is connected, so: 

• 𝑚𝑠 ≥ 𝑛𝑠 − 1 (connected, so for 𝑛 vertices we would have at least 𝑛 − 1 edges) 
• 𝑚𝑠 = Ω(𝑛𝑠) (n. of edges at least proportional to n. of vertices) 

More in general: 𝑂(𝑛 +𝑚) – 𝑛 vertices and 𝑚 edges 

3.4.1.3 Extension 

 
The possible extension is to visit all the graph (aka: all components even if not connected) – following 
pseudocode can be used as design pattern to extend to all graph in case it’s not connected: 

for 𝑣 = 1 𝑡𝑜 𝑛 do:   

 𝐿𝑣[𝑣]. 𝐼𝐷 = 0 

for 𝑣 = 1 𝑡𝑜 𝑛 do:  

if 𝐿𝑉[𝑣]. 𝐼𝐷 = 0 then  

𝐷𝐹𝑆(𝐺, 𝑣)  

Overall, the complexity if 𝜃(𝑛 +𝑚) because it scans over all the vertices and nodes. 
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Note: BACK EDGE is justified by the following – full proof before and examples below kept in Italian 
since was in old notes and not useful here, but to be complete. 

 
 

3.4.1.4 Exercises 

 
1) Given a graph 𝐺 and two vertices 𝑠, 𝑡 determine, if it exists, a path from 𝑠 to 𝑣 
2) Given a graph 𝐺 return a cycle (if any) 

Solution 

• 1st exercise (𝑠 − 𝑡 path/connectivity) 
o ∀𝑣 ∈ 𝑉 add a field 𝐿𝑉[𝑣].𝑝𝑎𝑟𝑒𝑛𝑡 
o Modify 𝐷𝐹𝑆(𝐺, 𝑣) s.t. when a 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 𝐸𝐷𝐺𝐸 (𝑣, 𝑤) is labeled  

▪ then 𝐿𝑉[𝑤]. 𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑣 (𝑣 is parent of 𝑤 in 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 𝐸𝐷𝐺𝐸 tree) 
o Run 𝐷𝐹𝑆(𝐺, 𝑠). Check if 𝑡 has been visited 

▪ NO: then return “No path” 
▪ YES: starting from 𝑡, follow the “parent” label, so as to build a path from 𝑡 to 𝑠 

o Complexity: 𝑂(𝑚𝑠) where 𝑚𝑠 is the number of edges of 𝑠 connected component 
 

• 2nd exercise (cycle) → we go back thanks to back edges because they “close” the cycles 
o ∀𝑣 ∈ 𝑉 add a field 𝐿𝑉[𝑣]. 𝑝𝑎𝑟𝑒𝑛𝑡 and ∀𝑒 ∈ 𝐸 add a field 𝐿𝐸[𝑒]. 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 
o (𝑣, 𝑤) is a 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 𝐸𝐷𝐺𝐸 then 𝐿𝑉[𝑤]. 𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑣  
o (𝑣, 𝑤) is a 𝐵𝐴𝐶𝐾 𝐸𝐷𝐺𝐸 then 𝐿𝐸[𝑒]. 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 = 𝑤  

▪ then 𝑤 is an ancestor of 𝑣 in the DFS tree  
o Run DFS on each connected component 
o Check all the edges 

▪ as soon as an edge 𝑒 = (𝑣,𝑤) is found as 𝐵𝐴𝐶𝐾 𝐸𝐷𝐺𝐸  
▪ and 𝐿𝐸[𝑒]. 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 = 𝑤 
▪ then return a cycle adding to 𝑒 all the edges found in the path from 𝑣 to 𝑤 
▪ if no 𝐵𝐴𝐶𝐾 𝐸𝐷𝐺𝐸 is found, then return “No Cycles” (it would be a tree) 

Complexity for both algorithms: 𝜃(𝑛 +𝑚) → invoked DFS once for each connected component 
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3.4.1.5 More applications 

 
More or less what we did until now with DFS was returning a spanning tree. Other problems which can 
be solved are the following: 

• Graph connectivity: return whether the graph is connected or not 
• Connected components: return a labeling of all the vertices of 𝐺 s.t. 2 vertices have the same 

label if and only if they are in the same connected component – basically, keeping a count of 
connected components – if it is 1, then 𝐺 is connected 

We will modify the algorithm in such a way that 𝐿𝑉[𝑣]. 𝐼𝐷 = 1 (let’s generalize it, so) 𝐿𝑉[𝑣]. 𝐼𝐷 = 𝑘 
(integer, label of the k-th component), counting the connected component of 𝐺 and assigning the 
same ID to vertices in the same connected component. 

for 𝑣 = 1 𝑡𝑜 𝑛 do:  

 𝐿𝑉[𝑣]. 𝐼𝐷 = 0 

𝑘 = 0  

for 𝑣 = 1 𝑡𝑜 𝑛 do:  

 if 𝐿𝑉[𝑣]. 𝐼𝐷 = 0 then 

  𝑘 = 𝑘 + 1 

𝐷𝐹𝑆(𝐺, 𝑣, 𝑘)  

if 𝑘 = 1 then return 𝑌𝐸𝑆  

return 𝑁𝑂 

Complexity of the whole thing: 𝜃(𝑛 +𝑚) 

To be complete (analysis): 

Let 𝑐 be the number of connected components in 𝐺. Then: 

- The call 𝐷𝐹𝑆(𝐺, 𝑣, 𝑘) is executed exactly 𝑐 times on vertices from different connected 
components. Then, at the end of the for loop 𝑘 = 𝑐 (𝑘 = 1 if 𝐺 is connected) 

o ⇒ The algorithm is correct 
- We can prove that the complexity is 𝑂 (𝑛 +  𝑚) as before.  

3.4.1.6 Summary 

 
Given a graph 𝐺, the following problems can be solved in 𝜃(𝑛 +𝑚) using DFS: 

• Test if 𝐺 is connected 
• Find the connected components of 𝐺  
• Find a spanning tree of 𝐺 (if 𝐺 is connected – otherwise it’s called spanning forest) 

o execute 𝐷𝐹𝑆(𝐺, 𝑠) from any vertex 𝑠 and return 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 𝐸𝐷𝐺𝐸𝑆 as spanning tree 
edges and given 𝐷𝐹𝑆 is executed once, its complexity is 𝑂(𝑚) 

• Find a path between two vertices (if any) – so from a vertex 𝑠 to 𝑡 (s-t connectivity) 
• Find a cycle (if any) 

Graph 
connectivity 

Connected 
components 
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Possible questions for exam: Show how to find a spanning tree in linear time/Find if graph is 
connected in linear time, something like that.  

3.4.2 Breadth-First Search (BFS) 

 
This is an iterative algorithm that starting from a source vertex “visits” all the vertices in the same 
connected component of 𝑠, and partitioning the vertices in levels 𝐿𝑖 depending on their distance 𝑖 
from 𝑠 (with distance we mean the shortest path). We’ll use adjacency list to represent 𝐺: 

• 𝐿𝑉[𝑣]. 𝐼𝐷 = 0 if not visited, 1 if visited 
• 𝐿𝐸[𝑒]. 𝑙𝑎𝑏𝑒𝑙 = 𝑛𝑢𝑙𝑙 if 𝑒 has no label, 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌/𝐶𝑅𝑂𝑆𝑆 𝐸𝐷𝐺𝐸 

o 𝐶𝑅𝑂𝑆𝑆 𝐸𝐷𝐺𝐸𝑆 connect vertices at different levels (different labels) 

procedure 𝐵𝐹𝑆(𝐺, 𝑠)  

𝑣𝑖𝑠𝑖𝑡(𝑠)  

𝐿𝑉[𝑠]. 𝐼𝐷 = 1  

𝐶𝑟𝑒𝑎𝑡𝑒 𝑎 𝑠𝑒𝑡 𝐿0 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑠  

𝑖 = 0  

while (! 𝐿𝑖 . 𝑖𝑠𝐸𝑚𝑝𝑡𝑦()) do:  

𝐶𝑟𝑒𝑎𝑡𝑒 𝑎 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡 𝑜𝑓𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝐿𝑖+1  

for each 𝑣 ∈ 𝐿𝑖 do:  

for each 𝑒 ∈ 𝐺. 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠(𝑣) do:  

if 𝐿𝐸[𝑒]. 𝑙𝑎𝑏𝑒𝑙 = 𝑛𝑢𝑙𝑙 then  

𝑤 = 𝐺. 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒(𝑣, 𝑒)  

if 𝐿𝑣[𝑤]. 𝐼𝐷 = 0 then  

 𝐿𝐸[𝑒]. 𝑙𝑎𝑏𝑒𝑙 = 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 𝐸𝐷𝐺𝐸 

𝑣𝑖𝑠𝑖𝑡 𝑤   

𝐿𝑉[𝑤]. 𝐼𝐷 = 1   

𝑎𝑑𝑑 𝑤 𝑖𝑛 𝐿𝑖+1  

else   

 𝐿𝐸[𝑒]. 𝑙𝑎𝑏𝑒𝑙 = 𝐶𝑅𝑂𝑆𝑆 𝐸𝐷𝐺𝐸 

𝑖 = 𝑖 + 1  

An explanation step-by-step of the algorithm: 

- Visit the source vertex 
- Iterate over all levels 
- Explore neighbors starting from level 𝐿𝑖 
- Create a set of vertices for the next level 𝐿𝑖+1 
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- For all incident edges 
o if vertex has not been visited 
o we get the opposite vertex 
o If vertex has not been visited yet 

▪ mark edge as 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 𝐸𝐷𝐺𝐸 
▪ visit vertex  
▪ mark it as visited 
▪ add the vertex to the set of vertices for the next level 

o Else (if vertex has already been visited) 
▪ node represents crossing between different levels 
▪ it will be marked as 𝐶𝑅𝑂𝑆𝑆 𝐸𝐷𝐺𝐸 
▪ it connects two nodes that don’t share any ancestor-descendant relation 

o Increment the level counter 
o Algorithm terminates where there are no more vertices to visit 

Here we do the following example (at first invoke: 𝐵𝐹𝑆(𝐺, 1)): 

 

 

 

 

 

 
 
 

 

 

 

 

 

 
The algorithm, when executed, it will behave like the following: 

- 𝐿0 = {1} 
o takes source vertex and marks it as visited 

- 𝐿1 = {2, 3} 
o goes to next level and for each vertex takes its connected component (incident edge) 
o so, from 1 goes to 2 because it’s connected 

▪ given it was not explored yet, also jumps to 3 
- 𝐿2 = {4, 5} 

o same thing for 4 and 5 
o they were the connected components of 2 and 3, jumping to the opposite edge 
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- 𝐿3 = {6, 7} 
o from 5 we see a connected component, found within next level of adjacency list 
o given they were already explored, between 4,5/5,6 two 𝐶𝑅𝑂𝑆𝑆 𝐸𝐷𝐺𝐸𝑆 are discovered 

3.4.2.1 Correctness 

 
At the end of 𝐵𝐹𝑆(𝐺, 𝑠) we have: 

1) all vertices in 𝐶𝑠 are visited and all edges are labelled 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌/𝐶𝑅𝑂𝑆𝑆 𝐸𝐷𝐺𝐸 
2) the set of 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 𝐸𝐷𝐺𝐸𝑆 are a spanning tree 𝑇 (tree touching all the vertices) of 𝐶𝑠 

a. analogously to DFS, we call it BFS tree (this is rooted in 𝑠) 
3) ∀𝑣 ∈ 𝐿𝑖 the path in 𝑇 from 𝑠 to 𝑣 has 𝑖 edges and every other path from 𝑠 to 𝑣 has exactly 𝑖 

edges (e.g., ≥ 𝑖 edges) ≈ 𝑖 ≡ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠, 𝑣) 

Proof of (1) and (2): same as for the DFS 

Proof of (3):  

- Let 𝑃: 𝑠 = 𝑢0 → 𝑢1 → ⋯ → 𝑢𝑖 = 𝑣 where 𝑢𝑗 ∈ 𝐿𝑗 is “discovered” from 𝑈𝑗−1 ∀𝑗 ⇒ (𝑢𝑗−1, 𝑢𝑗) is a 
𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 𝐸𝐷𝐺𝐸 ⇒ 𝑃 is a path of 𝑇 

- By contradiction, assume ∃ a path 𝑃′: 𝑠 = 𝑧0 → 𝑧1 → ⋯𝑧𝑡 = 𝑣 with 𝑡 < 𝑖 (shorter) 
- This implies that 𝑠 = 𝑧0 ∈ 𝐿0, 𝑧1 ∈ 𝐿1, 𝑧2 ∈ 𝐿1 𝑜𝑟 𝐿2 … 𝑧𝑡 ∈ 𝐿1 or 𝐿2 or …  𝐿𝑡  (might be on some 

levels before) 
- This means that, since 𝑧𝑡 = 𝑣, 𝑣 ∉ 𝐿𝑖 but this is a contradiction 

In words:  

- What you have is that the first node is in level zero, so on and so forth until the tth node is in 
some list between 𝐿1 and 𝐿𝑡 

- If this were true, then we have that 𝑣 ≠ 𝐿𝑖, because we have that 𝑡 < 𝑖 
- This is absurd since we assumed that 𝑣 ∈ 𝐿𝑖  

3.4.2.2 Complexity and applications 

 
∀𝑣 ∈ 𝐶𝑠 there is one iteration of the first for loop and 𝑑(𝑣) (or 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣)) iterations of the second 
for loop (inside of it and for all access to 𝐿𝑖, only 𝜃(1) complexity). 

Complexity:  

- 𝜃(𝑚𝑠) (which becomes 𝜃(𝑚) if 𝐺 is connected; in general, each for execution and access to 
lists) 

- again, more in general 𝑂(𝑛 +𝑚) 

Some applications:  

1) Same as for DFS in 𝜃(𝑛 +𝑚) time 
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Specifically, this means the following: 

 

 

 

 

 

2) Given a graph 𝐺 = (𝑉, 𝐸) and 𝑠, 𝑡 ∈ 𝑉 return the shortest path (in terms of least amount of 
edges between two nodes) from 𝑠 to 𝑣 (if any) 

a. ∀𝑣 ∈ 𝑉, 𝐿𝑉[𝑣]. 𝑝𝑎𝑟𝑒𝑛𝑡 
b. modify 𝐵𝐹𝑆(𝐺, 𝑠) s.t. when (𝑣, 𝑢) is labeled 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 𝐸𝐷𝐺𝐸 then 𝐿𝑉[𝑣]. 𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑣 
c. run 𝐵𝐹𝑆 and return the set of child-parent edges 
d. Complexity: 𝜃(𝑚𝑠) 

More precisely: 

- Visits the full graph 𝐺 (even if it is not connected) 
- Determine the number of connected components in 𝐺 
- If 𝐺 is connected, find a spanning tree of 𝐺  

3.5 PROBLEMS SOLVABLE WITH DFS AND BFS 
 
Given in an exam was asked, here we summarize this in a specific section: 

- test if graph is connected 
- find connected components 
- find a 𝑠 − 𝑡 path 
- find a cycle if it exists 
- find a spanning tree, if graph is connected 

Complexity for both: 𝑂(𝑛 +𝑚)  
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4 MINIMUM SPANNING TREE (MST) 

The goal is to interconnect a set of objects in the cheapest possible way (e.g., connecting PCs inside 
departments using the least amount of cable as possible). It’s a fundamental between the 
computation problems, studied since the 1920s. (See for reference §Chapter 21 of Fourth Edition of 
CRLS) 

4.1 DEFINITION AND APPLICATIONS 
 
More specifically, its definition is the following: 

- Input: A graph 𝐺 = (𝑉, 𝐸) undirected, connected and weighted 
o A weight function 𝑤: 𝐸 → ℝ where 𝑤(𝑢, 𝑣) = cost of edge (𝑢, 𝑣) 
o The bigger the weight, the bigger to cost to pay when traversing that edge 

- Output: A spanning tree 𝑇 ⊆ 𝐸 of 𝐺 s.t. 𝑤(𝑡) = ∑ 𝑤(𝑢, 𝑣)𝑢,𝑣∈𝑇  is minimized 
o Goal is minimizing the sum for all weights of every edge of the tree 

Consider the following example; here, the MST is made of the blue part (minimum part to cover all 
vertices – for the sake of simplicity, we consider it starting from 𝑎): 

 

 

 

 

We give the following observations: 

- Minimum-weight spanning tree (means minimum ST → minimum-weight ST) 
o This is not to be confused with e.g. minimum number of sides 
o Because all spanning trees have the same number of sides 

▪ and we want the one that weighs the least (it may not be unique) 
- Connected assumption is without loss of generality (wlog) 

o If graph is not connected, we talk about Minimum Spanning Forest (𝑀𝑆𝐹) 
▪ = a MST for each connected component 

There are different applications we can define: 

- Networks (computers, sensors, electrical) 
o E.g., broadcast determining a backbone 

▪ a subgraph connecting all network nodes and with minimum cost 
- Machine learning (building block for clustering algorithms) 
- Computer vision (object detection) 
- Data mining 
- Subroutine in other (approximation) algorithms 

o To solve other problems, e.g. TSP 
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4.1.1 Difficult in determining an MST 

 
We ask ourselves some questions: 

- How difficult is it? 
o The number of possible solutions can be exponential w.r.t the input size 

- How many spanning trees can a graph have? 

The simplest MST algorithm is to enumerate all the spanning trees (STs) and select the one with 
minimum weight. We would need a complete graph to do that: it has all (𝑛

2
) possible edges. 

A complete graph has 𝑛(𝑛−2) different STs (worst case would be exponential; 
when 𝑛 ≥ 50 quantity larger than the number of atoms in the known universe, 

even on the small graphs this would not work).  

The right figure shows a complete graph. 

However, surprisingly, MST can be solved in near-linear time (specifically in 𝑂((𝑛 + 𝑚) 𝑙𝑜𝑔 𝑛)! It can 
be done using greedy algorithms ⇒ simpler to understand and implement in practice (e.g., Prim, 
Kruskal). They both apply (in different ways) a generic greedy algorithm, but with different 
applications. 

4.2 GENERIC GREEDY ALGORITHM FOR MST 
 
The idea of a generic-MST algorithm is to maintain the following invariant: 

- At each iteration, 𝐴 is a subset of edges of some MST 
- Every time an edge is chosen, this is considered to be a right edge 

o Because the choices are made in a greedy manner 
- At each iteration, the algorithm adds an edge that does not violate the invariant 

o considered “safe” edge for 𝐴 (safe to add it/don’t do a mistake if you do) 
 
procedure 𝐺𝑒𝑛𝑒𝑟𝑖𝑐 − 𝑀𝑆𝑇(𝐺)   

𝐴 = ∅  

while 𝐴 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑓𝑜𝑟𝑚 𝑎 𝑠𝑝𝑎𝑛𝑛𝑖𝑛𝑔 𝑡𝑟𝑒𝑒 do:  

𝑓𝑖𝑛𝑑 𝑎𝑛 𝑒𝑑𝑔𝑒 (𝑢, 𝑣) 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑠𝑎𝑓𝑒 𝑓𝑜𝑟 𝐴   // 𝑐𝑟𝑢𝑐𝑖𝑎𝑙 𝑠𝑡𝑒𝑝  

𝐴 = 𝐴 ∪ {(𝑢, 𝑣)}   // 𝑎𝑑𝑑 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑡𝑜 𝐴 

 return 𝐴 // 𝐴 𝑖𝑠 𝑎𝑛 𝑀𝑆𝑇 
 
This is simple but does not say anything on how to find a “safe” edge. So, the question is exactly: 

- How to find a safe edge? 
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Luckily, MSTs enjoy the structural property given by the Theorem next. First, some definitions:  
- A cut of graph 𝐺 = (𝑉, 𝐸) is a partition of 𝑉 → (𝑆, 𝑉 ∖ 𝑆) (figure on the right) 

o in words, a partition of vertices into two disjoint subsets  
o it can be done on one or more edges 

- An edge (𝑢, 𝑣) ∈ 𝐸 crosses a cut (𝑆, 𝑉 ∖ 𝑆) if 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑉 ∖ 𝑆 (or 
viceversa, so 𝑣 ∈ 𝑆 and 𝑢 ∈ 𝑉 ∖ 𝑆) 

o so, if its endpoints lie in different subsets of the partition defined by the cut 
- A cut respects a set of edges 𝐴 if no edge of 𝐴 crosses the cut 
- Given a cut, an edge that crosses the cut and is of minimum weight is called light edge (for that 

cut) → they are useful, because when included in MSTs, they have minimum weight 
o it’s important to say “an” edge given there could be two edges with same weight 
o in some cases, it’s called lightest edge, at least not in this course 

There is also the minimum cut, for which we have 𝑑(𝑣) ≥ 𝑡 ∀𝑣 ∈ 𝑉, where 𝑡 is a generic size of graph. 
Summing up all 𝑛 vertices, we obtain ∑ 𝑑(𝑣) ≥ 𝑡𝑛𝑣∈𝑉 , concluding it’s ∑ 𝑑(𝑣) = 2𝑚𝑣∈𝑉 . (this one is an 
exam question, so I put it here in case it could be useful).  

We give the following example; a simple cut on three edges and the light edge is to be considered as 
such because it’s respectful - it doesn’t cross the cut and it’s the minimum weight: 

 

 

 

 

 
 

4.2.1 Theorem and Proof 

 
Theorem:  

Let 𝐺 = (𝑉, 𝐸) be an undirected, connected and weighted graph. Let 𝐴 be a subset of 𝐸 included in 
some MST of 𝐺, let (𝑆, 𝑉 ∖ 𝑆) a cut that respects 𝐴 and let (𝑢, 𝑣) be a light edge for (𝑆, 𝑉 ∖ 𝑆). Then 
(𝑢, 𝑣) is safe for 𝐴.  

Consider the following example of 𝐺𝑒𝑛𝑒𝑟𝑖𝑐 − 𝑀𝑆𝑇; it basically just throws cuts at random and selects 
the edge with minimum cost which “respects” the others (aka it was not taken before), connecting 
possibly all vertices at least once, because it has to “span” them: 

  

 

 

 

As said, this one considers cuts at random; other algorithms have rules to choose cuts (e.g., Kruskal).  
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Proof of theorem: 

It uses the technique of “cut and paste”, standard technique used in the context of greedy algorithms, 
which is an “exchange argument”.  

- Cut-and-Paste is a way used in proofing graph theory concepts 
o Idea is this:  

▪ Assume you have solution for Problem 𝐴, you want to say some edge/node, 
should be available in solution  

▪ You will assume you have solution without specified edge/node 
▪ You try to reconstruct a solution by cutting an edge/node  

• then pasting specified edge/node  
• and say new solution benefit is at least as same as previous solution 

- So: fake to take an optimal solution and transform it in the solution returned by the algorithm 
- This shows the cost of the two solutions is the same  

o and also the solution returned by the algorithm it’s optimal 

Let 𝑇 be an MST that includes 𝐴 (basically, we take an optimal solution considering safe edges). 
Assume that (𝑢, 𝑣) ∉ 𝑇 (otherwise, we’d be done). We’ll build a new MST 𝑇′ that includes 𝐴 ∪
{(𝑢, 𝑣)}(⇒ (𝑢, 𝑣) is safe for 𝐴).  Consider the following example, in which (𝑢, 𝑣) is added to 𝑇 and a 
cycle is created, because 𝑇 is a ST. 

 

 

 

 

 

 

 

 

By hypothesis, (𝑢, 𝑣) crosses (𝑆, 𝑉 ∖ 𝑆) ⇒ ∃ another edge of 𝑇 that crosses that cut ⇒ (𝑥, 𝑦) in the 
figure (it would exist because it’s a spanning tree, if there wasn’t it wouldn’t be in the first place).  

- By hypothesis, (𝑆, 𝑉 ∖ 𝑆) respects 𝐴 ⇒ (𝑥, 𝑦) ∉ 𝐴 ⇒ removing (𝑥, 𝑦) from 𝑇 and adding (𝑢, 𝑣) 
we obtain a new spanning tree 𝑇′ = 𝑇 ∖ {(𝑥, 𝑦)} ∪ {(𝑢, 𝑣)} that includes 𝐴 ∪ {(𝑢, 𝑣)}, as we 
wanted (because it doesn’t partition it and simply adds (𝑢, 𝑣) regularly) 

- Now we need to show that 𝑇′ not only is a ST (spanning tree), but also a MST 
- (𝑥, 𝑦) and (𝑢, 𝑣) both cross (𝑆, 𝑉 ∖ 𝑆) but by hypothesis (𝑢, 𝑣) is the light edge between the two 

o ⇒ 𝑤(𝑢, 𝑣) ≤ 𝑤(𝑥, 𝑦) ⇒ 𝑤(𝑇′) = 𝑤(𝑇) − 𝑤(𝑥, 𝑦) + 𝑤(𝑢, 𝑣) ≤ 𝑤(𝑇) 
- But 𝑇 is an MST ⇒ 𝑤(𝑇′) = 𝑤(𝑇) 

In words: we've shown that adding an edge between vertices to a tree, making it a MST again, 
maintains its optimality. By proving that the added edge was already a greedy choice, we've shown 
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that its inclusion in the graph does not increase the weight of the tree and it maintains its properties 
safely. 

We’ll now see two MST algorithms that organize these “respectful” choices.  

Remember one thing overall: 

• An MST is unique only for all different weights 
• Otherwise, more MSTs exist at a time 

4.3 PRIM’S ALGORITHM 
 
This algorithm was crafted in 1957. How does Prim’s algorithm apply 𝐺𝑒𝑛𝑒𝑟𝑖𝑐 − 𝑀𝑆𝑇(𝐺): 

- 𝐴 is a single tree 
- Safe edge: a light edge that connects the tree with a vertex that does not belong to the tree 

o (𝑆, 𝑉 ∖ 𝑆) where 𝑆 are nodes of 𝐴 

Here goes the pseudocode: 

procedure 𝑃𝑟𝑖𝑚(𝐺, 𝑠)        // 𝑆 = 𝑠𝑜𝑢𝑟𝑐𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 

𝑋 = {𝑠}  

𝐴 = ∅  

// 𝑤ℎ𝑖𝑙𝑒 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 𝑋 𝑤𝑖𝑡ℎ 𝑜𝑡ℎ𝑒𝑟 𝑡ℎ𝑖𝑛𝑔𝑠   

while 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 (𝑢, 𝑣) 𝑤𝑖𝑡ℎ 𝑢 ∈ 𝑋 𝑎𝑛𝑑 𝑣 ∉ 𝑋 do:   

  (𝑢∗, 𝑣∗) = 𝑎 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑤𝑒𝑖𝑔ℎ𝑡 𝑠𝑢𝑐ℎ 𝑒𝑑𝑔𝑒 (𝑎𝑘𝑎 𝑙𝑖𝑔ℎ𝑡 𝑒𝑑𝑔𝑒) 

𝑎𝑑𝑑 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣∗ 𝑡𝑜 𝑋  // 𝑎𝑑𝑑 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑛𝑜𝑑𝑒 𝑡𝑜 𝑋 

𝑎𝑑𝑑 𝑒𝑑𝑔𝑒 (𝑢∗, 𝑣∗) 𝑡𝑜 𝐴  // 𝑎𝑑𝑑 𝑛𝑒𝑤 𝑒𝑑𝑔𝑒 𝑗𝑢𝑠𝑡 𝑓𝑜𝑢𝑛𝑑 𝑡𝑜 𝐴 

 return 𝐴 // 𝐴 𝑖𝑠 𝑛𝑜𝑤 𝑎 𝑀𝑆𝑇 

We explain with a figure how this algorithm works: 

 

 

 

 

 

 

 
It’s also called Jarnik’s algorithm, since it was the first to study this problem, then discovered 
independently by both Dijkstra and Prim (so you would find inside “Algorithms” by Jeff Erickson – next 
page an example with this name).   
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In summary, Prim's Algorithm operates by iteratively selecting safe edges, so light edges connecting 
the current tree with vertices not yet included in the tree. See the gif to see its run. 

- Basically, it includes two sets of vertices 
o the ones already included in the MST 
o the other containing the ones not yet included 

- At every step, it considers all the edges that connect the two sets and picks the minimum 
weight edge from these ones 

- After picking that one, it moves the other endpoint of edge containing the MST 

This algorithm “grows” a (spanning) tree from a source vertex 𝑠 (doesn’t matter who 𝑠 is) by adding an 
edge that a time. This is implemented resulting in an efficient and optimal solution. 

In the following example, a random vertex is chosen and then the algorithm is applied, following the 
principles discussed before in various points:  

 
- Correctness: it follows from the theorem 
- Complexity: 𝑂(𝑚 ∗ 𝑛) – depends on how it’s implemented 

o Step (𝑢∗, 𝑣∗) = 𝑙𝑖𝑔ℎ𝑡 𝑒𝑑𝑔𝑒 was written too much sparsely to understand its complexity 
o 𝑛 iterations doing at most 𝑚 vertices 
o Assuming 𝐺 is represented with an adjacency list 
o Keeping track of which edges are in 𝑋 associating a boolean variable for each edge 
o In each iteration we do an exhaustive research on the edges to find the light edge 

▪ 𝑂(𝑚) 
o There are 𝑛 − 1 iterations, looking at all 𝑚 edges to find the light edge 

▪ 𝑂(𝑚 ∗ 𝑛) 
o Polynomial time → efficient algorithm (for small graphs) 

▪ This time is not efficient in practice (big/large/very large graphs) 
• Think of Facebook graph: 𝑛 ≃ 2 𝑏𝑖𝑙𝑙𝑖𝑜𝑛𝑠 ∗ ℎ𝑢𝑛𝑑𝑟𝑒𝑑𝑠 
• This means it’s not so efficient in very large graphs 

  

https://www.google.com/url?sa=i&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFile%3APrim-animation.gif&psig=AOvVaw1Lhd4i5QWPCXY9fpkcwwgo&ust=1718211063380000&source=images&cd=vfe&opi=89978449&ved=0CBEQjRxqFwoTCJD2mJKB1IYDFQAAAAAdAAAAABAE
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A complete example just to make you really understand: 
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4.3.1 Efficient Prim’s Algorithm – Heap implementation 

 
Key observation: in the basic implementation, the computation of the light edge (minimum) is done 
repeatedly via exhaustive research (brute force= ⇒ should speed it up, so the algorithm and the 
computation will be faster. 

Golden rule in algorithms/coding: when an algorithm repeats frequently the same question, look for 
the “right” data structure to speed that operation up. The right kind of data structure to do this is a 
priority queue, implemented with a heap.  

Recap about this data structure, to see which operations it allows: 

- 𝑖𝑛𝑠𝑒𝑟𝑡 → add an object to the heap (possibly fast) 
- 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑀𝑖𝑛 → remove an object with the smallest key (highest priority) 

o to find the minimum, it uses in 𝑂(1) time the operation 𝑚𝑖𝑛 
- 𝑑𝑒𝑙𝑒𝑡𝑒 → given a pointer to an object, remove it 
- Note: In a heap with 𝑛 objects, the complexity of these operations is 𝑂(𝑙𝑜𝑔(𝑛)) 

We can redefine the Prim’s algorithm exploiting this efficient data structure, basically with the same 
principle; consider a min heap starting from whatever vertex, which is the root. From there, always 
extract the minimum value (means checking if it is min heap), then update the path. 

Note: usually, this uses a priority queue 𝑄, at least even in old years was like this here too.  

Below figure shows that: 

 

 

 

 

 
 

It’s simple to store vertices in the heap (instead of edges) – whatever operation, the heap property will 
be established again, restoring keys and values. We can redefine Prim’s implementation with a heap: 

procedure 𝑃𝑟𝑖𝑚 (𝐺, 𝑠)  // 𝑠 = 𝑠𝑜𝑢𝑟𝑐𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 

// 𝑡ℎ𝑒 ℎ𝑒𝑎𝑝 𝑤𝑖𝑙𝑙 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑎𝑙𝑙 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑦  

for each 𝑣 ∈ 𝑉: do  

 𝑘𝑒𝑦[𝑢] = +∞  //min𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑛𝑦 𝑒𝑑𝑔𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑣 𝑡𝑜 𝑡ℎ𝑒 𝑡𝑟𝑒𝑒 

𝜋(𝑣) = 𝑁𝑈𝐿𝐿  // 𝜋 = 𝑝𝑎𝑟𝑒𝑛𝑡 𝑜𝑓 𝑣 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑒𝑒 𝑏𝑒𝑖𝑛𝑔 𝑏𝑢𝑖𝑙𝑡 

𝐾𝑒𝑦[𝑠] = 0 // 𝑠𝑒𝑡 𝑖𝑡 𝑡𝑜 0, 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑖𝑡′𝑠 𝑡ℎ𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 

𝐻 = 𝑉 // 𝑎𝑡 𝑡ℎ𝑒 𝑣𝑒𝑟𝑦 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔, 𝑡ℎ𝑒 ℎ𝑒𝑎𝑝 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎𝑙𝑙 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑒𝑒 

while 𝐻 ≠ 0 do:  //𝑤ℎ𝑖𝑙𝑒 𝑡ℎ𝑒 ℎ𝑒𝑎𝑝 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 
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𝑣∗ = 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑀𝑖𝑛(𝐻)  // 𝑈 𝑖𝑠 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑓𝑜𝑟 𝑎 𝑙𝑖𝑔ℎ𝑡 𝑒𝑑𝑔𝑒 𝑓𝑜𝑟 (𝑉 \ 𝐻, 𝐻) 

for each 𝑣 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣∗: do  //𝑜𝑛𝑙𝑦 𝑡ℎ𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑛𝑜𝑑𝑒𝑠 𝑛𝑒𝑒𝑑 𝑡𝑜 𝑏𝑒 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑎𝑛𝑑 𝑡𝑎𝑘𝑒 𝑡ℎ𝑒 𝑒𝑑𝑔𝑒 𝑤𝑖𝑡ℎ 𝑙𝑖𝑔ℎ𝑡𝑒𝑠𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 

// 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑠𝑜𝑢𝑟𝑐𝑒, 𝑒𝑎𝑐ℎ 𝑜𝑡ℎ𝑒𝑟 𝑣𝑒𝑟𝑡𝑒𝑥 𝑤𝑖𝑙𝑙 ℎ𝑎𝑣𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 + ∞ 𝑎𝑛𝑑 𝑤𝑒 𝑡𝑎𝑘𝑒 𝑎𝑙𝑙 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑛𝑜𝑡 𝑖𝑛𝑠𝑖𝑑𝑒 ℎ𝑒𝑎𝑝  

 // 𝑢𝑝𝑑𝑎𝑡𝑒 𝑘𝑒𝑦 𝑎𝑛𝑑 𝜋 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑣𝑒𝑟𝑡𝑒𝑥 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣∗ 𝑏𝑢𝑡 𝑛𝑜𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑒𝑒 

if 𝑣 ∈ 𝐻 𝑎𝑛𝑑 𝑤(𝑣∗, 𝑣) < 𝐾𝑒𝑦(𝑣) then  

𝜋(𝑣) = 𝑣∗ // 𝐾𝑒𝑦(𝑣) = 𝑤(𝑣∗, 𝑣) = 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 v  𝑖𝑛𝑠𝑖𝑑𝑒 

𝑑𝑒𝑙𝑒𝑡𝑒 𝑣 𝑓𝑟𝑜𝑚 𝐻  

𝐾𝑒𝑦(𝑣) = 𝑤(𝑣∗, 𝑣) //𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 ℎ𝑒𝑎𝑝 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑣 𝑡𝑜 𝑡ℎ𝑒 𝑡𝑟𝑒𝑒, 𝑠𝑜 (𝑢, 𝑣)  

𝑖𝑛𝑠𝑒𝑟𝑡 𝑣 𝑖𝑛𝑡𝑜 𝐻  

We consider, during algorithm execution implicitly, we have 𝐴 = {(𝑣, 𝜋(𝑣)): 𝑣 ∈ 𝑉 ∖ {𝑠} ∖ {𝐻}} (which 
means 𝐴 keeps track of edges included and 𝐻 becomes empty). 

Complexity:  

- 𝑖𝑛𝑖𝑡 → 𝑂(𝑛) 
- 𝑤ℎ𝑖𝑙𝑒 → 𝑛 iterations 
- 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑀𝑖𝑛 → 𝑂(log(𝑛)) 

Total cost of only 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑀𝑖𝑛 operations: 𝑂(𝑛 log(𝑛)) 

- for loop: executed 𝑂(𝑚) times in total (every vertex is explored) → ∑ deg(𝑣) = 2𝑚𝑣  
o 𝑣 ∈ 𝐻 → 𝑂(1) 

▪ This here is a simple check 
o 𝐾𝑒𝑦(𝑣) = 𝑤(𝑣∗, 𝑣) → 𝑑𝑒𝑙𝑒𝑡𝑒 + 𝑖𝑛𝑠𝑒𝑟𝑡: 𝑂(2 log(𝑛)) = 𝑂(log(𝑛)) 

▪ Two operations  

Total cost of for loop: 𝑂(𝑚 log(𝑛)) (iterating for all adjacent nodes, quantity equal to node degree) 

This way, the total complexity of the algorithm is 𝑂(𝑛 log(𝑛) + 𝑚 log(𝑛)) = 𝑂(𝑚 log(𝑛)) (since 𝐺 is 
connected, we recall) → near-linear time  

Note: using Fibonacci heaps (more efficient, since they do amortized operations) ⇒ 𝑂(𝑚 + 𝑛 log(𝑛)) 

4.3.2 Exercises 

 
Exercise (uniqueness of MSTs): 

Show that if the weights of the edges are all distinct then there exists exactly one MST.  

(Hint: cut and paste argument – similar to the theorem correctness) 
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Solution (with details of lesson but also other including Wikipedia and other sources) 

 

 

 

 

Assume there are two MST different from each other, so the contrary and so 𝐴 ≠ 𝐵 ⇒ ∃ an edge in one 
but not in the other; since weights are distinct, ∃! with min weight, call it 𝑒1, without loss of generality 
(not introducing any artificial assumption), 𝑒1 ∈ 𝐴 and the argument is a cut-and-paste one (this 
choice will be unique, considering edge weights are all distinct from each other): 

- Add 𝑒1 to 𝐵 ⇒ this creates a cycle 𝐶; 𝐴 is (M)ST ⇒ 𝐴 has no cycles ⇒ 𝐶 has an edge 𝑒2 ∉ 𝐴, ≠
𝑒1 ⇒ 𝑤(𝑒2) > 𝑤(𝑒1)  

o Because 𝑒1 was chosen as the unique lowest-weight edge (only edge with minimum 
weight not in the other) among those belonging to exactly one of 𝐴 and 𝐵  

o Therefore the weight of 𝑒2 must be greater than the weight of 𝑒1 
o Now, both 𝑒1 and 𝑒2 are in 𝐶 

- Remove 𝑒2 from 𝐵 ⇒ get a new spanning tree with weight < 𝑤(𝐵) (so, smaller weight): 
contradiction, because 𝐵 is an MST! 

Two conclusions can be done: 

- More generally, if the edge weights are not all distinct then only the (multi-)set of weights in 
minimum spanning trees is certain to be unique; it is the same for all minimum spanning trees 

- When the edge weights are not all distinct, it's possible for multiple different MSTs to exist 
o however, while the actual arrangement of edges in these MSTs may vary, the set of 

weights of the edges across all MSTs will remain the same 

Other exercises 

1) Is the converse true? (e.g., are weights necessarily unique for every possible graph and this has 
to hold for every graph) 

Solution 

No: think of 𝐺 as a tree (literally only thing professor will write – lame, I know, I added more). 

A connected graph with repeated edge weights and this can still have a unique minimum spanning 
tree. Considered the trivial example of 𝐺 being a tree; in this case, there are no cycles, so any 
spanning tree will be minimal, hence unique, regardless of repeated edge weights. 

In conclusion, we might say: 

- Distinct weights guarantee a unique MST 
- Repeated weights can have multiple MSTs 

o But the set of weights used will always be the same across all of them 
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2) Show that the second best MST, that is, the spanning tree of second-smallest total weight, is 
not necessarily unique (here we look for only one graph) 

Solution 

There will be a unique MST, but for the second best, according to where the cut will be displaced, 
there will definitely be more than one, given the cut can be done on more than two edges at a time. In 
the following figure, there is only one MST of weight 7, but two second-best MSTs of weight 8. 

 

 

 

 

 

 

 
 
If you want a complete formal explanation, see the book solution to this exercise here (look for 
problem B in the link). 

4.4 KRUSKAL’S ALGORITHM 
 
Another very simple, very famous and fast algorithm for MST is Kruskal, which dates back to 1956. 

- It’s as fast as Prim, both in theory and in practice (if properly implemented) 
o very quick and clean in its implementation 

- It gives us the opportunity to study a new data structure 

It picks the minimum weighted edge at first and the maximum weighted edge at last. It sorts edges by 
weight and then adds them continuously, preserving the “safe edge” property – take only the 
unexplored. It does so preventing the adding of cycles. 

It implements the 𝐺𝑒𝑛𝑒𝑟𝑖𝑐 − 𝑀𝑆𝑇(𝐺) algorithm, but: 

- 𝐴 is a forest (set of trees) 
- Safe edge is a light edge connecting 2 distinct components 

Here goes the pseudocode: 

procedure 𝐾𝑟𝑢𝑠𝑘𝑎𝑙(𝐺)  \\ 𝑛𝑜 𝑠𝑜𝑢𝑟𝑐𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑛𝑒𝑒𝑑𝑒𝑑 

 𝐴 = ∅ 

 𝑆𝑜𝑟𝑡 𝑠𝑎𝑓𝑒 𝑒𝑑𝑔𝑒𝑠 𝑜𝑓 𝐺 𝑏𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 // 𝑒. 𝑔. 𝑢𝑠𝑒 𝑀𝑒𝑟𝑔𝑒𝑆𝑜𝑟𝑡 

for each 𝑒𝑑𝑔𝑒 𝑒 𝑖𝑛 𝑛𝑜𝑛 − 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡: do  //𝑠𝑜, 𝑜𝑟𝑑𝑒𝑟 𝑖𝑠 𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 

if 𝐴 ∪ {𝑒} 𝑖𝑠 𝑎𝑐𝑦𝑐𝑙𝑖𝑐 then:  // 𝑖𝑓 𝐼 𝑐𝑎𝑛 𝑎𝑑𝑑 𝑡ℎ𝑖𝑠 𝑛𝑒𝑤 𝑒𝑑𝑔𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑔 𝑎 𝑐𝑦𝑐𝑙𝑒 

https://viterbi-web.usc.edu/~shanghua/teaching/Spring2010/public_html/files/HW2_Solutions_A.pdf
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 𝐴 = 𝐴 ∪ {𝑒}  // 𝑔𝑜 𝑎ℎ𝑒𝑎𝑑 𝑎𝑛𝑑 𝑎𝑑𝑑 𝑖𝑡 

return 𝐴  

Consider the following examples – vertices will be sorted by weight and the result is not a tree but a 
set of two trees, adding only ones that do not form a cycle:  

 
Simple/small optimization of the algorithm: stop the for loop when 𝐴 has 𝑛 − 1 edges. Note also that a 
source vertex is not needed here.  

Correctness: follows from correctness of 𝐺𝑒𝑛𝑒𝑟𝑖𝑐 −𝑀𝑆𝑇 (here – basically, it’s always the same 
algorithm, only seen in a different way, considering it’s always “respecting” cuts in a safe way, as 
shown in next figure). 

 

 

 

 

 

 

 

 

 

 

 

Complexity: 

- Sorting: 𝑂(𝑚 log(𝑛)) 
- For loop: check whether 𝑒 = (𝑢, 𝑣) closes a cycle is equivalent to check whether 𝐴 contains an 

𝑢 − 𝑣 path → DFS/BFS in linear time on 𝐺 = (𝑉, 𝐴), which has 𝑛 vertices and ≤ 𝑛 − 1 edges  
- complexity: 𝑂(𝑛) 

Total: 𝑂(𝑚 ∗ 𝑛) → 𝑂(𝑚 log(𝑛)) + 𝑂(𝑚 ∗ 𝑛) = 𝑂(𝑚 ∗ 𝑛) [because implemented with adjacency list] 

Question: Can we implement it faster? Let’s delve into it in the next subsection.  
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4.4.1 Efficient Kruskal  

 
It can be implemented as fast as Prim’s, considering only frequent operations done inside the 
previous algorithms.  

- Kruskal frequent operation = cycle check (equivalently, path check) 
o It happens when an edge is added to 𝐴 

No data structure seen up until now is able to do this. We use a new data structure supporting this 
operation fast; it’s called Union-Find (also called disjoint set), created in 1964.  

This is a structure to merge disjoint sets (also non-overlapping in their elements) of objects and 
supports at least three operations: 

- Init (or Initialize): given an array 𝑋 of objects 
o it creates a Union-Find data structure with each object 𝑥 ∈ 𝑋 in its own set 

- Find: given an object 𝑥, return the name of the set that contains 𝑥 
- Union: given two objects 𝑥, 𝑦 merge the sets that contain 𝑥 and 𝑦 into a single set 

o done whenever the sets are distinct 
o if 𝑥, 𝑦 are already in the same set, this operation does nothing 

These operations can be implemented with the following complexities: 

- Init: 𝑂(𝑛) 
- Find: 𝑂(log(𝑛)) 
- Union: 𝑂(log(𝑛)) 

(Note: here, we assume 𝑛 represents the number of objects in the data structure) 

We want to implement Kruskal fast using the Union-Find structure: 

- Idea: Union-Find (U-F) keeps track of the connected components of the current solution 
o whenever I need to check if the merge unites with existing edges 
o 𝐴 ∪ {(𝑣, 𝑤)} creates a cycle ⇔ 𝑣,𝑤 are already in the same connected components 

procedure 𝐾𝑟𝑢𝑠𝑘𝑎𝑙(𝐺)  

𝐴 = ∅  

𝑈 = 𝑖𝑛𝑖𝑡(𝑉)   // 𝑈 − 𝐹 𝑑𝑎𝑡𝑎 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 

𝑠𝑜𝑟𝑡 𝑒𝑑𝑔𝑒𝑠 𝑜𝑓 𝐸 𝑏𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 // 𝑒. 𝑔. 𝑢𝑠𝑖𝑛𝑔 𝑀𝑒𝑟𝑔𝑒 𝑆𝑜𝑟𝑡 

for each 𝑒𝑑𝑔𝑒 𝑒 = (𝑣,𝑤) 𝑖𝑛 𝑛𝑜𝑛 − 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡: do  

if 𝐹𝑖𝑛𝑑(𝑣) ≠ 𝐹𝑖𝑛𝑑(𝑤) then:  // 𝑖𝑓 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡, 𝑡ℎ𝑒𝑦 𝑐𝑎𝑛 𝑏𝑒 𝑎𝑑𝑑𝑒𝑑 𝑤𝑖𝑡ℎ𝑖𝑛 𝑢𝑛𝑖𝑜𝑛 

 // 𝑛𝑜 𝑣 − 𝑤 𝑝𝑎𝑡ℎ 𝑖𝑛 𝐴, 𝑠𝑜 𝑂𝐾 𝑡𝑜 𝑎𝑑𝑑 𝑒 

 𝐴 = 𝐴 ∪ {(𝑣, 𝑤)} 

 // 𝑢𝑝𝑑𝑎𝑡𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑢𝑛𝑖𝑜𝑛 

𝑈𝑛𝑖𝑜𝑛(𝑣, 𝑤)  

return 𝐴  
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Complexity: 

- Init: 𝑂(𝑛)  
o actually, before the loop it’s 𝑂(𝑛) + 𝑂(𝑚𝑙𝑜𝑔(𝑛)) 

- Sorting: 𝑂(𝑚 log(𝑛)) 
- 2𝑚 Find: 𝑂(𝑚 log(𝑛)) 
- 𝑛 − 1 Union: 𝑂(𝑛 log(𝑛)) → only when I go inside an “if” and when the edge is added 
- 𝐴 updating: 𝑂(𝑛) 

o basically, the remaining part 

In total: 𝑂(𝑚 log(𝑛)) 

4.4.2 Union-find Implementation 

 
(Further readings for this part: here, here and here) 

We’ll use an array, which can be visualized as a set of directed trees. Each element of the array has a 
field 𝑝𝑎𝑟𝑒𝑛𝑡(𝑥) that contains the index of the array of some object 𝑦. 

Consider the following example: 

 

 

 

You can see the previous as: 

- Vertices: (indexes of) objects 
o called by index inside of the array 

- Edge (𝑥, 𝑦) ⇔ 𝑝𝑎𝑟𝑒𝑛𝑡(𝑥) = 𝑦 
o basically, direct edge 

A set of object corresponds with a set of trees directed to the “parent graph”: 

 

 

 

 

 

 

As convention: name of the set = root of that tree. We are giving the names of the roots, hence why we 
call them 𝑠𝑒𝑡 "4" and 𝑠𝑒𝑡 "6", visualized with direct trees. Consider the following operations: 

https://stem.elearning.unipd.it/pluginfile.php/749335/mod_folder/intro/eisner.mst-tutorial.pdf
https://stem.elearning.unipd.it/pluginfile.php/749335/mod_folder/intro/The%20saga%20of%20minimum%20spanning%20trees.pdf
https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f09/www/handouts/cmuonly/graham-hell.pdf
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- Init 

 

 

Allows to initialize nodes as the parents of themselves (hence, the self-loops you see above), so more 
precisely 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 = 1,2,… , 𝑛, initialize 𝑝𝑎𝑟𝑒𝑛𝑡(𝑖) to 𝑖 

- Find 

It follows parent by parent until the root is reached 𝑝𝑎𝑟𝑒𝑛𝑡 → 𝑝𝑎𝑟𝑒𝑛𝑡 → ⋯ → 𝑟𝑜𝑜𝑡. So basically, it 
returns the connected component of the vertex to search. 

Consider the following procedure – finds the name of a set containing the node to find and returns it. 
Basically, goes up father by father reaching a root identifiable as a self-loop. 

𝐹𝑖𝑛𝑑(𝑥):  

1) Starting from 𝑥’s position in the array 
a. traverse parent edges until reaching a position 𝑗  
b. s.t. 𝑝𝑎𝑟𝑒𝑛𝑡(𝑗) = 𝑗 

2) return 𝑗 

From figure, an example: 𝐹𝑖𝑛𝑑(3) ⇒  3 → 1 → 4    𝑟𝑒𝑡𝑢𝑟𝑛 4 

Definition: The depth of an object 𝑥 is the number of edges traversed by 𝐹𝑖𝑛𝑑(𝑥) 

From figure, an example:  

𝑑𝑒𝑝𝑡ℎ(4) = 𝑑𝑒𝑝𝑡ℎ(6) = 0, 𝑑𝑒𝑝𝑡ℎ(1) = 𝑑𝑒𝑝𝑡ℎ(5) = 1, 𝑑𝑒𝑝𝑡ℎ(2) = 𝑑𝑒𝑝𝑡ℎ(3) = 2  

The complexity of 𝐹𝑖𝑛𝑑(𝑥) is proportional to the largest depth of 𝑥, depending on the Union 
implementation.  

- In general, the worst case complexity is 𝑂(𝑛), depending on how the trees are merged 
o In any case, it strictly depends from the largest depth of an object/the biggest height of 

the parent graph 
- In any case, the maximum height of a tree is (𝑛 − 1) 

As shown in figure, this strictly depends on the specific case; some are better, some are worse: 
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- Union 

𝑈𝑛𝑖𝑜𝑛(𝑥, 𝑦) → given two objects 𝑥, 𝑦 

- The two trees of the parent graph containing 𝑥 and 𝑦 must be merged in a single tree 
- The simplest way is to point one of the 2 roots to one another node of the other tree 

  

 

 

We need to decide: 

1) Which of the 2 roots remains a root 
2) To which node should a root point (equivalently, where the new edge is directed) 

Up next, we try to answer to (2). 

In the right figure (for Point 1) the root (4) is pointed, because we want to 
keep the depth as low as possible. That’s the simplest thing that we can 

do. 

 Every level below the root would make the depth bigger by 1 (because 
there’s a new parent edge) and the depth of 𝑧.  

(For Point 2) We would need to have (6) pointing (4), because otherwise 
depth would increase – minimum possible increasing depth – so do not 
take 1 or 3 but the root. So, the root has to point to the other root, so to 

increase depth only by 1. 
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A better example of Union to clearly see what’s going on: 

 

 

 
 
 

We would need to have the smallest amount of nodes pointing to the biggest one – in other words, to 
have the least increasing depth, there are two alternatives, concerning Point 1: 

- One possible idea for is to minimize the number 
of objects whose depth will increase 

o This way, objects depth increases as 
much as the depth of the tree in which 
it’s been chosen to set the tree 

o This is called “union-by-size”. This is the 
chosen option indeed.  

- Alternatively: the root of the least tall tree points 
to the one of the tallest tree 

o This is called “union-by-rank”  

To make you actually understand: 

- Union by Size means that during the union operation, the root of the smaller tree (the one with 
fewer elements) is made a child of the root of the larger tree (the one with more elements) 

- Union by Rank means that during the union operation, the root of the tree with a lower rank is 
made a child of the root of the tree with a higher rank 

o The rank is a rough estimate of the tree's height. 

The rank of a node generally refers to the distance (the number of nodes including the leaf node) 
between the furthest leaf node and the current node. Basically rank includes all the nodes beneath 
the current node – so, it keeps track of the height or the depth.  

For the procedure 𝑈𝑛𝑖𝑜𝑛(𝑥, 𝑦): 

1) Invoke 𝐹𝑖𝑛𝑑(𝑥) and 𝐹𝑖𝑛𝑑(𝑦) to obtain the names 𝑖 and 𝑗 of the sets that contain 𝑥 and 𝑦 
a. Basically, just to understand in which tree they are 
b. If 𝑖 = 𝑗 then 𝑟𝑒𝑡𝑢𝑟𝑛 (aka – there is nothing to do) 

 
2) if 𝑠𝑖𝑧𝑒(𝑖) ≥ 𝑠𝑖𝑧𝑒(𝑗) then 

𝑝𝑎𝑟𝑒𝑛𝑡(𝑗) = 𝑖  

𝑠𝑖𝑧𝑒(𝑖) = 𝑠𝑖𝑧𝑒(𝑖) + 𝑠𝑖𝑧𝑒(𝑗)  // 𝑢𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑡𝑟𝑒𝑒 𝑟𝑜𝑜𝑡𝑒𝑑 𝑖𝑛 𝑗 

else  

 𝑝𝑎𝑟𝑒𝑛𝑡(𝑖) = 𝑗 

𝑠𝑖𝑧𝑒(𝑗) = 𝑠𝑖𝑧𝑒(𝑖) + 𝑠𝑖𝑧𝑒(𝑗) // 𝑢𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑡𝑟𝑒𝑒 𝑟𝑜𝑜𝑡𝑒𝑑 𝑖𝑛 𝑖 
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Here, consider 𝑠𝑖𝑧𝑒 is a field to be added to the data structure apart from 𝑝𝑎𝑟𝑒𝑛𝑡(𝑥) counting the 
elements in the tree with root 𝑥. 

  

 

 

 

4.4.3 Exercises 

 
Exercise 

Argue that the complexity of 𝐹𝑖𝑛𝑑(𝑥) (and of 𝑈𝑛𝑖𝑜𝑛(𝑥, 𝑦)) is 𝑂(log(𝑛)). 

Solution 

Initially, 𝑑𝑒𝑝𝑡ℎ(𝑥) = 0 ∀𝑥. 𝑑𝑒𝑝𝑡ℎ(𝑥) can only increase because of a Union in which the root of the tree 
of 𝑥 points to another root (depth increases by 1 by construction). This happens only when the tree of 
𝑥 gets merged to a tree of size not smaller (at least as big) ⇒ when the depth of 𝑥 increases, the size of 
the tree of 𝑥 at least doubles. 

For union by size, infact, when two trees are united, the tree with fewer nodes is attached to the root of 
the tree with more nodes. 

- How many times can this happen?  
o Given the size of the tree is ≤ 𝑛 
o ≤ log2 𝑛 times (at most) 

▪ Therefore the depth of 𝑥 cannot increase more than log2 𝑛 times 
▪ Depth increases by ≤ 1 
▪ ⇒ 𝑑𝑒𝑝𝑡ℎ(𝑛𝑒𝑤 𝑡𝑟𝑒𝑒)  𝑂(log(𝑛)) 

So, we have two different algorithms with complexity 𝑂(𝑚 log(𝑛)). To reach complexity 𝑂(𝑚) is still an 
open problem (there are slightly faster algorithms, but not not others optimal able to reach 𝑂(𝑚)). 
Given the complexity of 𝐹𝑖𝑛𝑑(𝑥) is proportional to 𝑑𝑒𝑝𝑡ℎ(𝑥), this is 𝑂(log(𝑛)). 

Exercise (made in Italian years) 

The maximum spanning tree of a graph is a spanning tree of maximum cost, of which the sum 
∑ 𝑤(𝑒)𝑒∈𝑇  is maximum. Give an algorithm for which this problem which uses as procedure an 
algorithm to solve minimum spanning tree problem.  

Algorithm:  

- Multiply by −1 the weights of all edges 
- Apply Kruskal the algorithm 
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Super-fast algorithms for MST: 

- Prim/Kruskal → 𝑂(𝑚𝑙𝑜𝑔(𝑛)) 
- Fredman-Tarjan (Prim + Fibonacci heaps – 1984) → 𝑂(𝑚 + 𝑛𝑙𝑜𝑔(𝑛)) 
- Fredman-Tarjan (1984) → 𝑂(𝑚𝑙𝑜𝑔∗𝑛)        (log∗ 265536 = 5) → N. of atoms in the universe 
- Gabow et al. (1986) → 𝑂(𝑚𝑙𝑜𝑔(log∗(𝑛))) 
- Chazelle (2000) → 𝑂(𝑚 𝑎𝑚,𝑛)     (𝑎(265536, 265536 ≤ 4) 

4.4.4 Examples of union by size (and others) 

 
Given it was asked in an older exam, here we have an example of union by size (here you can find all): 

  

https://takeuforward.org/data-structure/disjoint-set-union-by-rank-union-by-size-path-compression-g-46/
https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/Disjoint/
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5 SHORTEST PATH 

5.1 DEFINITION AND TERMINOLOGY 
 
We give some definitions: 

- Given a weighted and directed graph, the length of a path 𝑝 = 𝑣1, 𝑣2, … 𝑣𝑘 is defined as 
𝑙𝑒𝑛(𝑃) = ∑ 𝑤(𝑣𝑖 , 𝑣𝑖+1)

𝑘−1
𝑖=1  (basically, it’s a sum of all the weights for this path) 

- A shortest path from a vertex 𝑢 to a vertex 𝑣 is a path with min. length among all 𝑢 − 𝑣 paths 
- The distance between 2 vertices 𝑠 and 𝑡, denoted as 𝑑𝑖𝑠𝑡(𝑠, 𝑡) is the length of a shortest path 

from 𝑠 to 𝑡; if there is no path at all from 𝑠 to 𝑡 then 𝑑𝑖𝑠𝑡(𝑠, 𝑡) = +∞ 

5.2 PROBLEM AND APPLICATION 
 
Given a directed, weighted graph and a source vertex 𝑠 ∈ 𝑉 and a destination 𝑡 ∈ 𝑉, compute the 
shortest path from 𝑠 to 𝑣. Consider the following example of a generic graph: 

 

Observation: in directed graphs, in general 𝑑𝑖𝑠𝑡(𝑢, 𝑣) ≠ 𝑑𝑖𝑠𝑡(𝑣, 𝑢) 

Applications: 

- Road networks (Google Maps) 
- Routing in networks (e.g., Internet) 
- Robots navigation 

Instead of solving the problem just presented, we will solve it using a different one.  

5.3 SINGLE-SOURCE SHORTEST PATHS (SSSP) 
 
Definition: 

- Input: A directed, weighted graph 𝐺 = (𝑉, 𝐸) with source vertex 𝑠 ∈ 𝑉 with length 𝑙𝑒 ≥ 0 with 
edge weights 𝑤: 𝐸 → ℝ and a source vertex 𝑠 ∈ 𝑉 

- Output: 𝑑𝑖𝑠𝑡(𝑠, 𝑣), ∀𝑣 ∈ 𝑉 → total length of the shortest path from 𝑠 and 𝑣 
o Shortest path to all destinations generally 

Comments: 

- No algorithms are known for the previous problem that run asymptotically faster than the best 
SSSP algorithm in the worst case scenario 
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- We’ll work with directed graphs 
o Because it’s more general in nature 

▪ So if we work with these, also we can with undirected 
▪ With few “cosmetic” modifications 

o But all the algorithms that we’ll see can be adapted easily for undirected graphs 
- The assumption 𝑙𝑒 ≥ 0 ∀𝑒 ∈ 𝐸 is meaningful. It’s true in a lot of applications (distances 

between roads), but not in all! 

5.3.1 Non-negative edge weights 

 
We’ll first solve a special case: non-negative edge weights 𝑤:𝐸 → ℝ≥0. We’ve already solved a special 
case of this one, which was when all weights are equal (specifically, when all the weights are 𝑤 = 1) 
→ already solved it in linear time using BFS. 

Consider the following idea: an edge of weight different from 1 (can be 𝑤 = 𝑛), but we force it to be 
using a replace with all edges with weight 1 (replaced with 𝑛 edges with weight 𝑤 = 1).  

 

 

This one uses BFS (with reduction – aka “use a problem to solve another one”) – the reduction step is 
important because BFS allows to compute shortest paths intended as number of edges of the path, 
counting each one as single-weighted (we take a “longer” edge and treat it as “𝑛” edges with 1 as 
value). 

- First issue: integer weights, so it’s a still special case (not general) 
- Second (bigger) issue: the size of the graph can be much bigger than the size of the starting 

graph; the length of the graph can be ≫ 𝑛,𝑚) 
o ⇒ BFS takes linear time in the “bigger” graph  

▪ and this is not necessarily linear time in the size of the original graph 
▪ this can definitely grow exponentially 

5.3.1.1 Intuition of a new algorithm 

 
We consider a source vertex 𝑠 and the problem of finding a shortest path towards all of them.  

- This continues recursively, between nodes, arcs and other arcs, continuing each time 
- Apart from the shortest path we see, can there be another shortest path? 

o We can’t because there aren’t negative edges 
o Any other way, we pay more 

 

 

 

 
The edge (𝑠, 𝑣) must be the shortest path from 𝑠 to 𝑣 since the first segment of any other path is 
already larger, and the weights are non-negative; a similar reasoning works in the next steps.  
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5.3.2 Dijkstra’s algorithm 

 
Probably one of the most famous algorithms in Computer Science, born in 1956. This is a greedy 
algorithm, very similar to Prim.  

- Input: directed 𝐺 as adjacency list, 𝑙𝑒 ≥ 0, ∀𝑒 ∈ 𝐸, 𝑠 ∈ 𝑉,𝑤: 𝐸 → ℝ≥0 
- Output: 𝑑𝑖𝑠𝑡(𝑠, 𝑣) = 𝑙𝑒𝑛(𝑣), ∀𝑣 ∈ 𝑉 

o With 𝑙𝑒𝑛(𝑣) coming as shorthand form of the previous one 

procedure 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎(𝐺, 𝑠)  

𝑋 = {𝑠} // 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑤ℎ𝑖𝑐ℎ ℎ𝑎𝑣𝑒 𝑏𝑒𝑒𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑠𝑜 𝑓𝑎𝑟 − 𝑤𝑒 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑘𝑛𝑜𝑤 𝑡ℎ𝑒 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑡𝑜 𝑡ℎ𝑒𝑚 

𝑙𝑒𝑛(𝑠) = 0 //𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑠𝑜𝑢𝑟𝑐𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 

𝑙𝑒𝑛(𝑣) = ∞  // 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

while 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 (𝑣, 𝑤) 𝑤𝑖𝑡ℎ 𝑣 ∈ 𝑋 𝑎𝑛𝑑 𝑤 ∉ 𝑋: do  

(𝑣∗, 𝑤∗) = 𝑠𝑢𝑐ℎ 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝑙𝑒𝑛(𝑣) + 𝑤(𝑣,𝑤)  

  𝑎𝑑𝑑 𝑤∗ 𝑡𝑜 𝑋 // 𝑎𝑑𝑑 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑟𝑡𝑒𝑥 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑒𝑡 

  𝑙𝑒𝑛(𝑤∗) = 𝑙𝑒𝑛(𝑣∗) + 𝑤(𝑣∗, 𝑤∗) //𝑢𝑝𝑑𝑎𝑡𝑒𝑠 𝑡ℎ𝑒 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  

// 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑓𝑜𝑢𝑛𝑑 𝑡𝑜 𝑏𝑒 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑣𝑒 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑓𝑜𝑟 𝑡ℎ𝑎𝑡 𝑛𝑒𝑤 𝑣𝑒𝑟𝑡𝑒𝑥 

Consider the following figure – here, we iterate and each time we process a new node 𝑤∗: 
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We do a very quick example – a set of vertices grows starting from a source vertex. We find an edge 
minimizes the length of the shortest path. Each time, a light path is taken incrementally.  

 

 

 

 

 

 

Praise of Dijkstra’s algorithm: in each iteration, it irrevocably and myopically estimates the shortest 
path distance to an additional vertex despite having so far looked at only a fraction of the graph! 

 

 

 

 

 
 
Observation: Dijkstra’s algorithm does not work on graphs with negative weights 
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This means simply the following: here, all weights are positive, and the shortest path is actually the 
bottom one, no matter what value we will put inside the question mark. 

 

 

 

 

 

 

 

 
 

Here, instead, the optimal path is the upper one, but here, it won’t even be considered, and we also 
know Dijkstra does not revise its decisions. 
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Another example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider for the exam some examples are present in the relative chapter.  
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5.3.2.1 Correctness and complexity 

 
Complexity of Dijkstra’s algorithm: 𝑂(𝑚 ∗ 𝑛) 

Correctness of Dijkstra’s algorithm: 

- Invariant: ∀𝑥 ∈ 𝑋, 𝑙𝑒𝑛(𝑥) is 𝑑𝑖𝑠𝑡(𝑠, 𝑥) the length of minimal path from 𝑠 to 𝑥 

The proof goes on by induction on |𝑋|: 

- Base case: |𝑥| = 1 
o Trivial, only the source vertex (path to 0) 

 
- Inductive hypothesis: 

o Invariant is true ∀|𝑥| = 𝑘 ≥ 1 
o Let 𝑣 the next vertex added to 𝑋 and (𝑢, 𝑣) the arc 
o The shortest path 𝑠 to 𝑢 + (𝑢, 𝑣) is a path 𝑠 to 𝑣 of length  

𝜋(𝑣) = min(𝑢,𝑣):𝑢∈𝑋,𝑣∉𝑋 𝑙𝑒𝑛(𝑢) + 𝑤(𝑢, 𝑣)  
o Consider any path from 𝑝 from 𝑠 to 𝑣 we’ll show that 𝑃 is not shorter than 𝜋(𝑣): 

(basically, any vertex crossing 𝑋) 
 

 

 

 

 

 
Let (𝑥, 𝑦) be the first arc in 𝑃 that traverses 𝑋 and let 𝑃′ be the sub-path from 𝑠 to 𝑥.  

Since edges are non-negative, the length 𝑃 is non-negative and at least the length of 𝑃′ plus the weight 
of that edge: 

𝑙𝑒𝑛(𝑃) ≥ 𝑙𝑒𝑛(𝑃′) + 𝑤(𝑥, 𝑦) 
 

 

≥ 𝑙𝑒𝑛(𝑥) + 𝑤(𝑥, 𝑦) ≥ 
 

≥ 𝜋(𝑦) 

 

≥ 𝜋(𝑣) 

 

 
(Basically, any possible path can be selected, but only the shortest ones are selected, and this is 
correct since the choice is safe already. Any possible path is not shorter than Dijkstra’s selection, 
given it’s already the shortest possible. It only holds for non-negative edges, remember).  
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5.3.2.2 Exercises 

 
Exercise 

Write an implementation of Dijkstra’s algorithm with heaps. 

Solution 

procedure 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎(𝐺, 𝑠)  (almost identical to Prim’s implementation with heaps) 

𝑋 = {𝑠}  

𝐻 = ∅  // 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 ℎ𝑒𝑎𝑝 

𝑘𝑒𝑦(𝑠) = 0  // 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑘𝑒𝑦 𝑜𝑓 𝑠𝑜𝑢𝑟𝑐𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 

for each 𝑣 ≠ 𝑠: do  // 𝑖𝑡𝑒𝑟𝑎𝑡𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 

  𝑘𝑒𝑦(𝑣) = ∞ 

for each 𝑣 ∈ 𝑉: do  // 𝑖𝑛𝑠𝑒𝑟𝑡 𝑖𝑛𝑠𝑖𝑑𝑒 𝑚𝑖𝑛 ℎ𝑒𝑎𝑝 

  𝑖𝑛𝑠𝑒𝑟𝑡 𝑣 𝑖𝑛𝑡𝑜 𝐻 

while 𝐻 𝑖𝑠 𝑛𝑜𝑛 − 𝑒𝑚𝑝𝑡𝑦: do  // 𝑐ℎ𝑒𝑐𝑘 𝑖𝑛𝑠𝑖𝑑𝑒 𝑎𝑙𝑙 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑒𝑎𝑝 

𝑤∗ = 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑀𝑖𝑛(𝐻)  

  𝑎𝑑𝑑 𝑤∗ 𝑡𝑜 𝑋  

𝑙𝑒𝑛(𝑤∗) = 𝑘𝑒𝑦(𝑤∗)  

// 𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 ℎ𝑒𝑎𝑝  

for each 𝑒𝑑𝑔𝑒 (𝑤∗, 𝑦) 𝑠. 𝑡. 𝑦 ∉ 𝑋: do  

 𝑑𝑒𝑙𝑒𝑡𝑒 𝑦 𝑓𝑟𝑜𝑚 𝐻 

   𝑘𝑒𝑦(𝑦) = min {𝑘𝑒𝑦(𝑦), 𝑙𝑒𝑛(𝑤∗) + 𝑤(𝑣∗, 𝑤∗)}   

   𝑖𝑛𝑠𝑒𝑟𝑡 𝑦 𝑖𝑛𝑡𝑜 𝐻 

(This algorithm gives only the length of the path, but it’s not difficult to also insert the actual path 
inside of this one) 

Complexity: 

- considering the graph as adjacency list, 𝑛 vertices and 𝑚 edges 
- log(𝑛) iterations because of heap usage 

Total number of operations: 𝑂((𝑛 +𝑚) log(𝑛))     

(there are 𝑂(𝑚 + 𝑛) operations on heaps and each one has complexity 𝑂(log(𝑛))) 
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Another exercise, done in previous years: 

Exercise: when ∃! shortest path from 𝑠 to 𝑡: 

a) All lengths are integer and distinct 

b) All lengths are distinct powers of 2 

c) (a) + there is no directed cycle 

Answer: (b) → 2 sums of distinct powers of 2 cannot be the same number 

5.4 GENERAL SSSP PROBLEM 
 

(Further readings: here and here) 

Let’s look back at the general case, not the special one anymore. In this one, graphs can have edges 
with negative weights. Who cares about negative weights? 

1) In road networks, traversing one edge comes with a reward/bonus → weights represent more 
general costs than just distance 

2) Compute a profitable sequence of financial transactions 

With negative weights we must be careful about what we even mean by “shortest paths”. We ask 
ourselves what’s the shortest path between 𝑠 and 𝑣. It’s also seen we have a negative cycle, keeping 
going inside of the graph indefinitely.  

 

 

 

 

We conclude there is no shortest 𝑠 − 𝑣 path ⇒ 𝑑𝑖𝑠𝑡(𝑠, 𝑣) is undefined (∞,−∞). So, how about 
forbidding negative cycles (that is, compute shortest cycle-free/simple paths). Now the problem is 
well-defined, but it’s NP-Hard (problem for which we don’t have any polynomial time algorithm, 
unless 𝑃 = 𝑁𝑃).  

5.4.1 Single-Source Shortest Paths (revised version) 

 
- Input: Directed weighted graph 𝐺 = (𝑉, 𝐸) and a source vertex 𝑠 ∈ 𝑉 
- Output: One of the following: 

o 𝑑𝑖𝑠𝑡(𝑠, 𝑣) ∀ vertex 𝑣 ∈ 𝑉 
o A declaration that 𝐺 contains a negative cycle 

 

Observation: can a shortest path contain a cycle? Not negative-weight cycles, 
but not positive-weight either. This is very simple to see, considering we enter 

a loop in which cost is always bigger. 

https://dl.acm.org/doi/10.1145/3607866
https://www.quantamagazine.org/finally-a-fast-algorithm-for-shortest-paths-on-negative-graphs-20230118/
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What about 0-weight cycles? We can remove all of them, therefore wlog we can assume to compute 
cycle-free shortest paths, which have (at most) ≤ 𝑛 − 1 edges.  

What needs to be changed in Dijkstra’s algorithm in order to make it able to deal with negative-weights 
edges?  

- Consider an example below: we take the shortest path each time between vertices 
o It continuously updates its set adding a new vertex 

- Every time a new vertex gets added, it never comes back to its decision 

 

 

 

 

 

 

 

Note that this is important, because in each relaxation step, the algorithm assumes the "cost" to the 
"closed" nodes is indeed minimal, and thus the node that will next be selected is also minimal. 

The idea of it is: If we have a vertex in open such that its cost is minimal - by adding any positive 
number to any vertex - the minimality will never change. 

Without the constraint on positive numbers, the above assumption is not true. 

Since we do "know" each vertex which was "closed" is minimal - we can safely do the relaxation step - 
without "looking back". If we do need to "look back" - Bellman-Ford offers a recursive-like (DP) 
solution of doing so. 

Problem: 

- It never revisits/updates its decisions, but it should for all vertices! 
o Once a vertex is marked as “closed”, we will never develop this node again 
o If we have a vertex in open such that its cost is minimal - by adding any positive number 

to any vertex - the minimality will never change 
o Without the constraint on positive numbers - the above assumption is not true 
o It assumes them to be positive to make the algorithm run faster and does this to avoid 

considering paths which can’t be shorter 
- 𝑙𝑒𝑛(𝑣) should be an estimated distance, which needs to be updated for every vertex 

o how many times? ≤ 𝑛 − 1 edges ⇒ 𝑛 − 1 times should be enough 
o maximum number of edges in a simple path between any two vertices 
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5.4.2 Bellman-Ford Algorithm 

 
- Input: A directed graph 𝐺 with edge weights 𝑤:𝐸 → ℝ and a source vertex 𝑠 ∈ 𝑉 
- Output: Either 𝑑𝑖𝑠𝑡(𝑠, 𝑣), ∀𝑣 ∈ 𝑉 or a declaration that 𝐺 contains a negative cycle 

The algorithm is used when the graph might possess negative weights and can even detect negative 
cycles. If the graph contains one, there is no cheapest path, instead one can make it cheaper by one 
more walk around said negative cycle (in 𝑛 − 1 iterations it reaches a fix-point, if it doesn’t it means a 
negative cycle exists). Still, it’s slower compared to Dijkstra. 

procedure 𝐵𝑒𝑙𝑙𝑚𝑎𝑛 − 𝐹𝑜𝑟𝑑 (𝐺, 𝑠)  

 𝑙𝑒𝑛(𝑠) = 0 

 𝑙𝑒𝑛(𝑣) = ∞ ∀𝑣 ≠ 𝑠 

for 𝑛 − 1 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do  

 for each 𝑒𝑑𝑔𝑒 (𝑢, 𝑣) ∈ 𝐸: do 

  // 𝑢𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑎𝑘𝑎 “𝑟𝑒𝑙𝑎𝑥” 𝑒𝑑𝑔𝑒 (𝑢, 𝑣)) 

  𝑙𝑒𝑛(𝑣) = min{𝑙𝑒𝑛(𝑣), 𝑙𝑒𝑛(𝑢) + 𝑤(𝑢, 𝑣)} 

  for each 𝑒𝑑𝑔𝑒 (𝑢, 𝑣) ∈ 𝐸: do 

   if 𝑙𝑒𝑛(𝑣) > 𝑙𝑒𝑛(𝑢) + 𝑤(𝑢, 𝑣) then 

    //𝑠𝑜𝑚𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑛 − 𝑡ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

    return “𝐺 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑦𝑐𝑙𝑒” 

So basically, it either returns 𝑆𝑆𝑆𝑃(𝐺, 𝑠) or a declaration 𝐺 has a negative cycle. It overestimates the 
length of the path, then slowly goes by relaxation.  

Complexity: 𝑂(𝑚 ∗ 𝑛) → a loop working (𝑛 − 1) times over 𝑚 vertices 

The following is an example of the algorithm working as code, iteratively reaching multiple vertices 
and estimating the current distance the best way.  

Remember, for each iteration, one needs to use the values of the previous column in order to make 
the algorithm work properly. Column “last” changes only if the “7” column does: 

 

 

 

 

 

 

 

Consider for the exam some examples are present in the relative chapter.  
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Comments: 

- It’s more “distributed” then Dijkstra ⇒ has played a prominent role in the evaluation of the 
Internet routing protocols 

- It has been the fastest algorithm until 2022, when a near-linear algorithm was published 

Correctness: 

Let 𝑙𝑒𝑛(𝑖, 𝑣) denote the length of a shortest path from 𝑠 to 𝑣 that contains ≤ 𝑖 (to read as “at most”) 
edges. Since the shortest path from 𝑠 to 𝑣 contains ≤ 𝑛 − 1 edges, it’s sufficient to prove that after 𝑖 
iterations, 𝑙𝑒𝑛(𝑣) ≤ 𝑙𝑒𝑛(𝑖, 𝑣) (so, length of the “real” shortest path is ≤ the one using at most 𝑖 edges).  

We will prove it by induction on 𝑖: 

- Base case: 𝑖 = 0 

𝑙𝑒𝑛(𝑠) = 0 ≤ 𝑙𝑒𝑛(0, 𝑠) = 0 

𝑙𝑒𝑛(𝑣 ≠ 𝑠) = +∞ = 𝑙𝑒𝑛(0, 𝑣 ≠ 𝑠)  

//𝑐𝑎𝑛𝑛𝑜𝑡 𝑟𝑒𝑎𝑐ℎ 𝑣 𝑢𝑠𝑖𝑛𝑔 0 𝑒𝑑𝑔𝑒𝑠, 𝑠𝑜 𝑡ℎ𝑖𝑠 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑛𝑜𝑡 𝑢𝑠𝑖𝑛𝑔 𝑠   

- Inductive hypothesis: 

𝑙𝑒𝑛(𝑣) ≤ 𝑙𝑒𝑛(𝑘, 𝑣) ∀1 ≤ 𝑘 < 𝑖 

Assume this is true for every 𝑘 and this needs to be proven in the case of at most 𝑖 edges.  

Take 𝑖 ≥ 1 and a shortest path from 𝑠 to 𝑣 with ≤ 𝑖 edges. Let (𝑢, 𝑣) be the last edge of this path. Then: 

𝑙𝑒𝑛(𝑖, 𝑣) = 𝑤(𝑢, 𝑣) + 𝑙𝑒𝑛(𝑖 − 1, 𝑢) 

 

 

 

Assume taking 𝑖 edges and taking a shortest path from 𝑠 to 𝑣. We consider (𝑢, 𝑣) to be the last edge of 
this path of the path and the 𝑖 − 1 edge which is the middle edge one in the picture. 

We reason by contradiction, arguing there should be a shorter shortest path apart from the one we are 
considering. 

By the inductive hypothesis, 𝑙𝑒𝑛(𝑢) ≤ 𝑙𝑒𝑛(𝑖 − 1, 𝑢). In the 𝑖 − 𝑡ℎ iteration we update: 

𝑙𝑒𝑛(𝑣) = min{𝑙𝑒𝑛(𝑣), 𝑙𝑒𝑛(𝑢) + 𝑤(𝑢, 𝑣)} 
 

 

 

In another form, what happens above is the following: 

𝑙𝑒𝑛(𝑢) + 𝑤(𝑢, 𝑣) ≤ 𝑙𝑒𝑛(𝑖 − 1, 𝑢) + 𝑤(𝑢, 𝑣) = 𝑙𝑒𝑛(𝑖, 𝑣) 

Therefore, we have 𝑙𝑒𝑛(𝑣) ≤ 𝑙𝑒𝑛(𝑖, 𝑣) as desired.  
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5.5 ALL-PAIRS SHORTEST PATHS (APSP) 
 
Description: 

- Input: A directed, weighted graph 𝐺 = (𝑉, 𝐸) 
- Output: One of the following: 

o 𝑑𝑖𝑠𝑡(𝑢, 𝑣) ∀ ordered vertex pair 
o A declaration that 𝐺 contains a negative cycle 

▪ This can be problematic in finding a shortest path 
▪ Now we would have to output 𝑛2 shortest paths 

A legitimate application of all-pairs shortest paths is to determine the diameter of a network: the 
longest of all shortest paths. 

Obvious solution:  

- Invoke Bellman-Ford (B-F) once for every vertex 
- It works, but has very high complexity (so, very inefficient): 𝑂(𝑚 ∗ 𝑛2) 

Can we do better? Yes, using dynamic programming.  

Outline: 

• The B-F algorithm has a dynamic programming formulation 
• It’s not difficult to see one can adapt that formulation to APSP, obtaining an 𝑂(𝑚 ∗ 𝑛2) 

algorithm (this will not be seen); an improved formulation can be made to run in 𝑂(𝑛3 log(𝑛)) 
• A different dynamic programming strategy gives an 𝑂(𝑛3) algorithm (without full proofs) 

5.5.1 Bellman-Ford via dynamic programming 

 
What are the subproblems here? 

We are gonna see this with an example, considering a shortest 𝑠 − 𝑣 path and a subpath 𝑃′, 
considered as the prefix of the 𝑠 − 𝑣 shortest path 

 

 

 

 

 

Observation: 𝑃′ is a shortest path (to a ≠ (different) destination, specifically to 𝑤) with fewer edges 
than 𝑃. Then 𝑃′ can be interpreted as a solution to a smaller subproblem. 

- Idea: introduce a parameter 𝑖 that restricts the maximum number of edges allowed in a path, 
with smaller subproblems having smaller edge budgets (measure of subproblem size) 

Subproblems: compute 𝑙𝑒𝑛(𝑖, 𝑣), the length of a shortest path from 𝑠 to 𝑣 that contains at most 𝑖 
edges (if no such path exists, define 𝑙𝑒𝑛(𝑖, 𝑣) as +∞) → 𝑂(𝑛2) subproblems. 
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Observation: every subproblem works with the full input; the idea is to control the allowable size of the 
output (i.e. solution to a subproblem) – compute a smaller solution on the whole input.  

Bellman-Ford recurrence 

We will write a recurrence on the costs: 

 

 

 
(It’s easy to transform a dynamic programming evaluation of this recurrence into our original 
formulation of B-F). This formulation can be adopted to APSP → 𝑂(𝑛3 log(𝑛)) 

5.5.2 Floyd-Warshall algorithm 

 
- Idea: go one step further; instead of restricting the number of edges allowed in a solution, 

restrict the identities of the vertices that are allowed in a solution (in other words, now paths 
can pass through only certain vertices) 

o Basically, it compares many possible paths through the graph between each pair of 
vertices using intermediate vertices 

Let’s define the subproblems: 

- Call the vertices 1,2,… , 𝑛 
- Compute 𝑑𝑖𝑠𝑡(𝑢, 𝑣, 𝑘) = length of a shortest path from 𝑢 to 𝑣 that uses only vertices from 

{1,2,… , 𝑘} as internal (i.e., not 𝑢 or 𝑣) – passes only through them – vertices and that does not 
contain a directed cycle (if no such path exists, define 𝑑𝑖𝑠𝑡(𝑢, 𝑣, 𝑘) = +∞) 

Consider parameter 𝑘 defines the sub-problem size. In total, there are 𝑂(𝑛3) sub-problems, 
considering we have 𝑛 choices for 𝑢, but also 𝑛 choices for 𝑢 and 𝑛 choices for 𝑘. 

Algorithm: expand the set of allowed internal vertices, one vertex at a time, until this set is 𝑉.  

Payoff of defining subproblems in this way: there are only 2 candidates for the optimal solution to a 
subproblem, depending on whether it uses vertex 𝑘 or not: 

 

 

 
 

So, we consider min{𝑑𝑖𝑠𝑡(𝑢, 𝑣, 𝑘 − 1), 𝑑𝑖𝑠𝑡(𝑢, 𝑘, 𝑘 − 1) + 𝑑𝑖𝑠𝑡(𝑘, 𝑣, 𝑘 − 1)} 
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Complexity: 

- 𝑂(1) work per subproblem 
- Total complexity: 𝑂(𝑛3) 

Note that there are only two candidates for the optimal solution to a sub-problem, depending on 
whether it uses vertex 𝑘 or not (if path becomes better this way). 

- If the sum of the distance between 𝑢 and the new node in question 𝑘 added to the distance 
between 𝑘 and 𝑣 is less than the distance directly between 𝑢 and 𝑣 

o Then the latter is replaced with the previous sum  
o (To go from node 𝑢 to node 𝑣 I should go through node 𝑘) 

- To catch negative cycles with this one, it’s enough to check 𝑑𝑖𝑠𝑡(𝑣, 𝑣) ≥ 0, ∀𝑣 ∈ 𝑉 

Here goes the algorithm: 

procedure 𝐹𝑙𝑜𝑦𝑑 −𝑊𝑎𝑟𝑠ℎ𝑎𝑙𝑙(𝐺)  

 𝑙𝑎𝑏𝑒𝑙 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑉 = {1,2,… , 𝑛} 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑙𝑦 

 // 𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 (𝑘 𝑖𝑛𝑑𝑒𝑥𝑒𝑑 𝑓𝑟𝑜𝑚 0) 

 𝐴 = 𝑛 ∗ 𝑛 ∗ (𝑛 + 1) 𝑎𝑟𝑟𝑎𝑦 // ℎ𝑒𝑟𝑒 𝑤𝑒 𝑤𝑖𝑙𝑙 𝑠𝑡𝑜𝑟𝑒 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 

 // 𝑏𝑎𝑠𝑒 𝑐𝑎𝑠𝑒𝑠 (𝑘 = 0) –  𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑙𝑦 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 

 for 𝑢 = 1 to 𝑛: do 

  for 𝑣 = 1 to 𝑛: do 

   if 𝑢 = 𝑣 then 𝐴[𝑢, 𝑣, 0] = 0 

   else if (𝑢, 𝑣) ∈ 𝐸 then 𝐴[𝑢, 𝑣, 0] = 𝑤(𝑢, 𝑣) 

   else 𝐴[𝑢, 𝑣, 0] = +∞ 

 // 𝑠𝑜𝑙𝑣𝑒 𝑎𝑙𝑙 𝑠𝑢𝑏𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 (𝑡𝑟𝑖𝑝𝑙𝑒 𝑙𝑜𝑜𝑝 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑜𝑓 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑖𝑛𝑔) 

 for 𝑘 = 1 to 𝑛: do 

  for 𝑢 = 1 to 𝑛: do 

   for 𝑣 = 1 to 𝑛: do 

    𝐴[𝑢, 𝑣, 𝑘] = min {𝐴[𝑢, 𝑣, 𝑘 − 1], 𝐴[𝑢, 𝑘, 𝑘 − 1] + 𝐴[𝑘, 𝑣, 𝑘 − 1]} 

 for 𝑢 = 1 to 𝑛: do // 𝑖𝑓 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑖𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 0, 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑛𝑜 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑙𝑜𝑜𝑝𝑠 

  if 𝐴[𝑢, 𝑢, 𝑛] < 0 then return "𝐺 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑦𝑐𝑙𝑒" 

Is there a truly-subcubic algorithm for APSP? 𝑂(𝑛3−𝜖) for some constant 𝜖 > 0. This one is still an 
open problem in Computer Science to solve. 
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Consider this execution example (added by me, not seen in class): 

 

 

 

 

 

 

 

 

 

 

 

 

 
To be precise (taken from Wikipedia this one, but clear enough): 

 

 

 

 

 

See the algorithm at work here. 

Demonstration of Floyd-Warshall algorithm for all-pairs shortest path on a directed graph with 4 
vertices.  

• At 𝑘 = 0, prior to the first iteration of the outer loop, the only known paths correspond to single 
edges in the original graph. Values based on edges, zero-encoding the diagonal so to know 
exactly how many edges there are-. 

• At 𝑘 = 1, paths that go through the vertex 1 are found: in particular, the path 2 → 1 → 3 is 
found, replacing the path 2 → 3 which has less edges but is longer. Starts with the loop 

• At 𝑘 = 2, paths going through the vertices {1,2} are found. The red and blue boxes show how 
the path 4 → 2 → 1 → 3 is assembled from the known paths 4 → 2 and 2 → 1 → 3 
encountered in previous iterations. The path 4 → 2 → 3 is not considered, because it is 
already known that 2 → 1 → 3 is the shortest path from 2 to 3 

• At 𝑘 = 3, paths going through the vertices {1,2,3} are found 
• Finally, at 𝑘 = 4, all shortest paths are found 

https://www.youtube.com/watch?v=oNI0rf2P9gE
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Another two examples: 
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6 MAXIMUM FLOWS 

(This is the last part of the course about graphs and in this period, the professor will upload a past 
exam and other exercises. Further readings: survey, paper, article) 

This problem originated in the 50’s to study rail networks. We give a couple of definitions: 
- Flow network is a directed graph 𝐺 = (𝑉, 𝐸) where each edge has a capacity 𝑐(𝑒) ∈ ℝ+, along 

with a designated source 𝑠 ∈ 𝑉 and sink 𝑡 ∈ 𝑉: 
o For convenience, write 𝑐(𝑒) = 0 if 𝑒 ∉ 𝐸, no edges enter 𝑠 and no edges leave 𝑡 

 
- Flow is a function 𝑓: 𝐸 → ℝ+ satisfying the following constraints: 

o Capacity: ∀𝑒 ∈ 𝐸, 𝑓(𝑒) ≤ 𝑐(𝑒) – value of the flow at most capacity of that edge 
o Conservation: ∀𝑢 ∈ 𝑉 ∖ {𝑠, 𝑡} we have  

∑ 𝑓(𝑣, 𝑢) = ∑ 𝑓(𝑢, 𝑣)

𝑣∈𝑉 𝑠.𝑡.(𝑢,𝑣)∈𝐸𝑢∈𝑉 𝑠.𝑡.(𝑣,𝑢)∈𝐸

 

o Conservation of flows: the amount of flow going in nodes must be equal to the flow 
going out from those  

▪ Initially, such flow is 0, which is “how much we can pass on the edge” 
 

- Value of a flow is: 

|𝑓| = ∑ 𝑓(𝑠, 𝑣)

𝑣∈𝑉 𝑠.𝑡.(𝑠,𝑣)∈𝐸

 

o Basically, the sum of all flows going in and out vertices thanks to edges 
o As a matter of fact, the amount of stuff traveling from source to sink 
o Such flow has to be less than or equal to the capacity 

6.1 MAXIMUM FLOW PROBLEM 
 
The maximum flow problem can be described as follows: given a flow network, find a flow 𝑓 of 
maximum value. Such flow is measured on the maximum value received in a sink node.  

Consider the following example of a network going from source to sink, each edge weighted 
representing capacities. We want to always retain the minimum, called bottleneck – see later. 

 

 

 

 

 

 

What was identified was a flow of value 10. In blue, the flow, which is the minimum capacity going 
forward, allowing to not exceed edges. First is 10, then can become 5 or only 5 (red one). 

 

https://stem.elearning.unipd.it/pluginfile.php/749341/mod_folder/intro/GoldbergT14.pdf
https://dl.acm.org/doi/abs/10.1145/3610940
https://www.quantamagazine.org/researchers-achieve-absurdly-fast-algorithm-for-network-flow-20220608/
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There can be several applications: 

- Rail/Airline/Road networks 
- Electrical networks 
- Liquid transportation networks 
- Moreover, it can be applied to solve several other problems in Computer Science  

o (e.g., bipartite matching) 

Max flow reduces to linear programming (like many other problems) but there are more efficient 
special-purpose algorithms. We’ll see one of them (Ford-Fulkerson), but there are plenty of more 
efficient algorithms – see “Further reading” section of Moodle or this chapter beginning link.  

A natural idea as first simple algorithm – solve the problem in a greedy way: 

- Find a path from 𝑠 to 𝑡 (in linear time using BFS) 
- Send as much flow along it as possible 
- Update capacities 
- Remove edges that have 0 remaining capacity 
- Repeat until the graph has no 𝑠 − 𝑡 graphs 

Note: this will not always work, however.  

Consider the following counterexample: here we have all edges with same capacity and choosing on 
path instead of one another can make a difference. The greedy algorithm fails in this example because 
it only considers one path at a time and does not account for the possibility of finding multiple paths 
that, when combined, can yield a higher total flow.  

 

 

 

 

 

Idea to improve this algorithm: revise/undo some of this flow later in the algorithm. How? By “pushing 
back” some flow through new edges in the reverse direction.  

6.2 FORD-FULKERSON ALGORITHM 
 
Definition: given a flow network 𝐺 a flow 𝑓, the residual network of 𝐺 w.r.t (with respect to) flow 𝑓, 𝐺𝑓, 
is a network with vertex set 𝑉 and with edge set 𝐸𝑟  as follows: 

- For every edge 𝑒 = (𝑢, 𝑣) in 𝐺 
o If 𝑓(𝑒) < 𝑐(𝑒), add 𝑒 to 𝐺𝑓  with capacity 𝐶𝑓(𝑒) = 𝑐(𝑒) − 𝑓(𝑒) 
o If 𝑓(𝑒) > 0, add another edge (𝑣, 𝑢) to 𝐺𝑓  with capacity 𝐶𝑓(𝑒) = 𝑓(𝑒) 

You might be surprised that the residual network 𝐺𝑓  can also contain edges that are not in 𝐺. As an 
algorithm manipulates the flow, with the goal of increasing the total flow, it might need to decrease 
the flow on a particular edge in order to increase the flow elsewhere. 
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The Ford-Fulkerson (F-F) algorithm (1956) repeatedly finds an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓  (e.g., using BFS) and 
uses 𝑃 to increase the current flow.  

- 𝑃 is called augmenting path 
o This is a path of edges in the residual graph with unused capacity greater than 0 from 

the source 𝑠 to the sink 𝑡 
o This can only flow on edges not fully saturated yet 

- In an augmenting path, the bottleneck is the smallest edge on the path 
o We can use this one to augment the flow along the path 

In figure below, in orange the augmenting path, in light-blue as written the bottleneck: 

 

 

 

 

 
- Augmenting the flow means updating the flow values along the augmenting path (left) 

o For forward edges, this means increasing the flow by the bottleneck value 
- When augmenting the flow along the augmenting path 

o You also need to decrease the flow along each residual edge (backward edges) by the 
bottleneck value (right) 

o Residual edges exist to “undo” bad augmenting paths which do not lead to a maximum 
flow 

 
The residual graph, so, contains also residual edges. This algorithm continues to find augmenting 
paths and augments the flow until no more augmenting paths exist. 

- A key realization is that the sum of the bottlenecks found in each augmenting path is equal to 
the max flow 

- Each time you take the minimum capacity value, reducing all capabilities of the path and 
increasing back edges capacities 

Note: there is no criteria in the path selection. Infact, is selects an s-t path, but “brute-forces” each 
one so to have no more augmenting paths in the end.   
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Let’s dive into the pseudocode. 

procedure 𝐹𝑜𝑟𝑑 − 𝐹𝑢𝑙𝑘𝑒𝑟𝑠𝑜𝑛 (𝐺, 𝑠, 𝑡)   

 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑓(𝑒) = 0 for all 𝑒 ∈ 𝐺, 𝐸 

 𝐺𝑓 = 𝐺 

 while 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎𝑛 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑖𝑛𝑔 𝑝𝑎𝑡ℎ 𝑃 𝑖𝑛 𝐺𝑓: do 

  𝑙𝑒𝑡 Δ𝑝 = min
𝑒∈𝑃

𝐶𝑓(𝑒)  // Δ𝑝 𝑖𝑠 𝑡ℎ𝑒 “𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘” 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑖𝑛 𝑃 

  for each 𝑒𝑑𝑔𝑒 𝑒 = (𝑢, 𝑣) ∈ 𝑃: do 

   if (𝑢, 𝑣) ∈ 𝐺, 𝐸 then: 

    𝑓(𝑢, 𝑣) = 𝑓(𝑢, 𝑣) + Δ𝑝 // 𝑠𝑒𝑛𝑑 𝑓𝑙𝑜𝑤 𝑎𝑙𝑜𝑛𝑔 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 

   else 𝑓(𝑣, 𝑢) = 𝑓(𝑣, 𝑢) − Δ𝑝 // 𝑡ℎ𝑒 𝑓𝑙𝑜𝑤 𝑚𝑖𝑔ℎ𝑡 𝑏𝑒 “𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑” 𝑙𝑎𝑡𝑒𝑟 

  𝑢𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑔𝑟𝑎𝑝ℎ 𝐺𝑓  

 return 𝑓 

Consider the following example, first with residual graph (edges each with its own capacity), then we 
consider the algorithm being applied. Basically, here we consider 4 which is the “bottleneck” – ergo, 
the minimal capacity. We are considering one generic 𝑠 − 𝑡 path, then trying all the others. 

 

 

 

 

 

 

 

 

 

The input graph here will not be modified, given we are working with the residual graph, so capacities 
get updated accordingly. To allow for “reviewing” the past decisions, we add edges going back, simply 
marking the fact we chose a capacity that allows us to “balance how much we have as of now”. 
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Edits are made according to how many units more we are sending, with respect to the capacity of 
single nodes. Again, a generic 𝑠 − 𝑡 path is chosen, then the minimum capacity (4) gets chosen for all 
nodes and the according residual capacity gets updated on the graph. 

 

 

 

 

 

 

 
Now the capacity getting selected is 4, so we update each edge of residual network. This 𝑠 − 𝑡 path is 
pushing back some flow, revising its decision from the original one. As you can see, one edge which 
had 4 before now goes back given it has spent its full capacity and another one which reached its limit 
(9), being “eliminated” from the graph, given it goes back from its decisions. 

 

 

 

 

 

 

 
Again, minimum capacity is 7, so in the new flow we consider each path. 
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One more iteration to go, using the same principle: 

 

 

 

 

 

 

 

 
The algorithm stops where there are no more 𝑠 − 𝑡 paths, thing that happens here: 

 

 

 

 

 

 

 

 
There are no more augmenting paths, and this implies this one is a max flow of value 23. 

 

Basically, when we find an augmenting path P: 

- if an edge (𝑢, 𝑣) ∈ 𝐸, we are increasing its flow by the bottleneck capacity  
- if an edge (𝑢, 𝑣) ∉ 𝐸, it’s like we are decreasing the flow on the edge (𝑣, 𝑢) and adding that 

amount of flow to other edges 

Complexity: 

- Assume capacities are integers; then: 
o the flow value increases by ≥ 1 is each iteration 
o the complexity of each iteration is 𝑂(𝑚) 

- Total complexity is 𝑂(𝑚 ∗ |𝑓∗|), where 𝑓∗ is a max flow 
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To fully summarize and complete (since the same example comes from CLRS): 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In case, even the gif of the algorithm executing. 

A flow network for which F-F can take 𝜃(𝑚 ∗ |𝑓∗|) time: 

 

 

 

 

 

https://commons.wikimedia.org/wiki/File:FordFulkersonDemo.gif
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Input size: 𝑂(𝑚𝑙𝑜𝑔(𝑈)), where 𝑈 = max capacity. 

In total for the complexity: 𝑂(𝑚|𝑓∗|) = 𝑂(𝑚 ∗ 𝑛 ∗ 𝑈) “pseudo-polynomial”. 

Note: it uses BFS (goes in levels – see drawing of mine using CLRS example) and tries all paths so to 
consume the flow.  
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7 2ND PART OF THE COURSE - NP-HARDNESS 

(Further readings and material: article, paper, paper, article, paper and video) 

Preamble: (a primer on NP-Hardness) 

- In the 30s, we started to understand what is or isn’t effectively computable 
o E.g., Halting Problem, generally problems which cannot be solved by computers 

- By the 60s, computer scientists had developed fast algorithms to solve some problems 
o While for others the only known algorithms were very slow 

- In the 70s, we started to understand what is or isn’t efficiently computable 
o This so-called 𝑃 ≠ 𝑁𝑃 question has been one of the deepest, most perplexing open 

research problems in theoretical computer science, since it was first posed in 1971 

In 1965, Jack Edmonds defined what efficient means: an algorithm is “efficient” if its running time is 
𝑂(𝑛𝑘) for some constant 𝑘 (𝑛 = input size) (for the curious of you, base of Cobham-Edmonds thesis, 
which basically specifies the following): 

- Problems for which a polynomial time algorithm exists are called tractable 
o all the algorithms seen so far 

- If no polynomial time algorithm exists then the problem is called intractable 

7.1 PROBLEMS 
 
Examples to illustrate how perplexing questions about efficient computation can be: 

1) Eulerian Circuit problem 
a. Given an undirected graph, an Eulerian Circuit is a cycle that 

traverses all the edges only once 
b. This problem can be solved in linear time (exercise) 
c. Note that in an Euler circuit you might pass through a vertex 

more than once 
2) Hamiltonian Circuit problem 

a. Given an undirected graph, an Hamiltonian Circuit is a cycle 
that traverses all the vertices only once (NOT every edge) 

b. To date, no one knows a polynomial algorithm to solve it! 
c. Note that in a Hamiltonian circuit you may not pass through all 

edges (see right figure)  
3) Minimum Spanning Tree  

a. Given a connected, undirected graph and a function 
𝑤: 𝐸 → ℝ, output a spanning tree 𝑇 ⊆ 𝐸 minimizing 
∑ 𝑤(𝑒)𝑒∈𝑇  

4) Traveling Salesperson Problem (TSP) – before was Salesman 
a. Given a complete, undirected graph and a function 𝑤: 𝐸 → ℝ, output a tour  𝑇 ⊆ 𝐸 

(i.e. a cycle that visits every vertex exactly once, basically an Hamiltonian circuit) 
minimizing ∑ 𝑤(𝑒)𝑒∈𝑇  

b. To date, no one knows a polynomial algorithm to solve it! 

https://www.quantamagazine.org/a-short-guide-to-hard-problems-20180716/
https://stem.elearning.unipd.it/pluginfile.php/749344/mod_folder/intro/Cook71.pdf
https://stem.elearning.unipd.it/pluginfile.php/749344/mod_folder/intro/Karp72.pdf
https://www.technologyreview.com/2021/10/27/1037123/p-np-theoretical-computer-science/
https://dl.acm.org/doi/10.1145/3460351
https://www.youtube.com/watch?v=pQsdygaYcE4
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A much easier task: given a graph and a list of vertices 𝐶, check (as opposed to output) if 𝐶 is an 
Hamiltonian circuit. 

- Problems that are easy to solve: class 𝑃 (“polynomial time”) 
o (1) and (3) ∈ 𝑃 

- Problems that are easy to verify: class 𝑁𝑃 (“nondeterministic” polynomial) 
o (1), (2), (3), (4) ∈ 𝑁𝑃 
o Rookie mistake: 𝑁𝑃 ≠ not-polynomial 

7.1.1 Exercises 

 
Problem: 

Given an undirected graph, an eulerian circuit is a cycle that traverses all the edges only once. 

Show it can be solved in linear time. 

Solution (not an official one, but still, I think it’s sound enough considering it’s based on research) 

To solve the problem of finding an Eulerian circuit in an undirected graph in linear time, we can use the 
following algorithm: 

1. Check if the graph is connected and has at most two vertices with odd degrees. If there are 
more than two vertices with odd degrees, then an Eulerian circuit cannot exist. 

2. If there are exactly two vertices with odd degrees, start the Eulerian circuit at one of them. 
Otherwise, start from any vertex. 

3. Traverse the graph using the following strategy: 

• At each vertex, choose an unvisited edge (if one exists) and traverse it. 

• If there are no unvisited edges at the current vertex, backtrack to the previous vertex. 

4. If you can traverse all the edges and end up at the starting vertex, then an Eulerian circuit 
exists. Otherwise, an Eulerian circuit does not exist. 

This algorithm works in linear time because it visits each edge exactly twice (once during the traversal 
and once during backtracking) and performs constant-time operations at each vertex. Therefore, the 
time complexity is 𝑂(𝑉 + 𝐸), where 𝑉 is the number of vertices and 𝐸 is the number of edges in the 
graph. 

There is an existing algorithm doing this done by Hierholzer, which showed the sufficient condition in 
Euler theorem, which states “a graph is connected if an only if has all nodes of even degree or if it has 
exactly two nodes of even degree”. It works for both directed and undirected graphs and works as 
follows: 

Preconditions:  

- All vertices in the graph must have even degrees 
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Steps: 

- Start at any vertex (each one can be a starting point) and follow a trail of edges until returning 
to the starting vertex. This forms a partial circuit 
 

- If the partial circuit covers all edges, the algorithm is complete. Otherwise, select any vertex in 
the current circuit that has unused edges and start a new circuit from that vertex, merging it 
into the previous circuit 
 

- Repeat step 2 until all edges have been used 
a. At some point, we will visit a vertex and there will be no edges to follow 
b. Remember that Eulerian Cycle properties, every vertex should have even degrees or 

equal in-out degrees 
c. If we are stuck the first time it means that we formed a cycle, and the vertex that we are 

stuck on is the starting vertex. This means we returned where we started. 
 

- The algorithm terminates when a complete Euler circuit is formed, where each edge is 
traversed exactly once, backtracking from the whole stack and holding complete knowledge of 
the structure 

Hierholzer's algorithm has a linear runtime, making it an efficient method for finding an Euler circuit in 
a graph that meets the necessary requirements. 

7.2 NP-HARD 
 
To simplify the study of the complexity of problems (branch of CS called “computational complexity”), 
we limit out attention to the following class of problems: decision problems. These are problems with 

a Boolean answer = {𝑌𝐸𝑆
𝑁𝑂

. We define the following complexity classes:  

1) 𝑃 is the set of decision problems that can be solved in polynomial time 
2) 𝑁𝑃 is the set of decision problems with the following property: 

a. If the answer is YES, then there is a proof of this fact (called “certificate”) that can be 
checked in polynomial time 

3) 𝑐𝑜 − 𝑁𝑃, which is essentially the opposite of 𝑁𝑃: 
b. Property: if the answer is NO, then there is a proof of this fact that can be checked in 

polynomial time 

Now we introduce the concept of NP-hardness:  

- A computational problem is NP-hard if a polynomial-time algorithm for it would imply a 
polynomial-time algorithm for every problem in 𝑁𝑃 

- A problem is NP-Complete (NPC) if it’s both in 𝑁𝑃 and 𝑁𝑃 − 𝐻𝑎𝑟𝑑 
a. Specifically, this is the complexity class representing the set of all problems 𝑋 in NP for 

which it is possible to reduce any other NP problem 𝑌 to 𝑋 in polynomial time 
b. Intuitively, this means we can solve 𝑌 quickly if we know how to solve 𝑋 quickly 

- NP-Hard are the problems that are at least as hard as the NP-complete problems and are 
known to be the hardest in 𝑁𝑃 
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Let’s draw a picture of what (today) we think the world looks like: 

 

 

 

 

 

 

 

One of the main open questions in Computer Science is whether 𝑃 = 𝑁𝑃.  

Why study NP-hardness: 

- Being NP-hard is strong evidence that a problem is intractable 
- It suggests you should use a different approach, such as: 

a. Identify tractable special cases 
b. Compromise on correctness, finding an approximate solution 

i. Approximation algorithms 
c. Use randomness to get a solution correct with high probability 

- … instead of looking for an efficient algorithm which may not even exist! 

The point of study the NP-hardness is that knowing that a problem is "intractable" is the best way you 
have to save some time while working on it, typically focusing on identify tractable special cases of 
the problem or producing an approximation algorithm. 

7.3 COOK-LEVIN THEOREM 
 
The Cook–Levin theorem (1971, made by both scientists at the same time) states that the Boolean 
satisfiability problem is NP-complete. 

- SAT: formula satisfiability (also called B-SAT/SATISFIABILITY) 
a. Input: a Boolean formula like the one you see on the right 
b. Output: it is possible to assign Boolean values to the variables 

𝑎, 𝑏, 𝑐 … so that the entire formula evaluates to TRUE? 

We consider a special case of SAT: 

- 3-SAT (aka 3-CNF-SAT): a Boolean formula in conjunctive normal form (CNF) if it is a 
conjunction (AND) of several clauses (so, what’s inside the parentheses) each of which is the 
disjunction (OR) of several literals, each of which is either a variable of its negation 

a. Example: (𝑎 ∨ b ∨ 𝑐) ∧ (𝑏 ∨ ¬𝑐 ∨ ¬𝑑) ∧ (¬𝑎 ∨ 𝑐 ∨ 𝑑) 
- Basically, a 3-CNF formula is a CNF formula with exactly 3 literals per clause 

How can we show that a problem is NP-Hard? 
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7.4 REDUCTIONS (SCHEMA AND FORMAL DEFINITION) 
 
Here we give a general scheme/concept of this one.  

To prove that a problem is NP-hard, we use a reduction, which is an algorithm for transforming one 
problem into one another. It is the way we compare the computational complexity of two problems, 𝐴 
and 𝐵. 

Generally, a problem 𝐴 reduces to problem 𝐵 if an algorithm that solves 𝐵 can be translated into one 
that solves 𝐴. A classic way to see this is the following one: 

 

 

 

If the reduction is “efficient” then 𝐵 is as hard as 𝐴 (equivalently, 𝐴 is not harder than 𝐵).  

Definition: A problem 𝐴 (pre/post processing has to take at most polynomial time – has to be efficient) 
reduces in polynomial time to problem 𝐵 (𝐴 ≤𝑝 𝐵) if there exist a polynomial time algorithm that 
transforms an arbitrary input instance 𝑎 of 𝐴 into an input instance 𝑏 of 𝐵 such that: 

1) 𝑎 is a YES instance of 𝐴 ⇒ 𝑏 is a YES instance of 𝐵 
2) 𝑏 is a YES instance of 𝐵 ⇒ 𝑎 is a YES instance of 𝐴 

 

 
 
 

Note: probably you saw the “mapping reduction” → ≤𝑚  

Here, we will use the polynomial reduction or, as already mentioned, Karp reduction → ≤𝑝 

(For some reason, in past years was only <𝑝) 
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Observation: 

- It’s more restrictive than the general scheme 
a. only one call to 𝐵, no postprocessing needed, only deal with decision problems 

Property (transitiveness): 𝐴 ≤𝑝 𝐵 and 𝐵 ≤𝑝 𝐶 ⇒ 𝐴 ≤𝑝 𝐶 

7.5 NP-HARDNESS (FORMAL DEFINITION AND PROOF) 
 
Definition: A problem is NP-Hard if every problem in NP reduces in polynomial time to it. 

Then, to prove that a problem 𝑋 is NP-Hard reduce a known NP-Hard problem 𝑌 to 𝑋.  

- This in turn means that you start from a problem already 
known to be hard 

a. e.g. 3-SAT 
- To your problem 

a. E.g. when you say you use 3-SAT for your 
problem, it implies that you are showing that if 
you could solve your problem efficiently, then you could also solve 3-SAT efficiently.  

b. Since 3-SAT is NP-complete, any problem that can be reduced to it in polynomial time 
is NP-hard. Let’s emphasize this one: 

- The reduction is FROM 𝑌  
a. I already know it’s NP-hard (known problem) 

- to 𝑋 
a. the “new” problem 

So, do it like 𝑌 ≤𝑝 𝑋. 

Rookie mistake: do a reduction in the wrong direction (so DO NOT DO 𝑋 ≤𝑝 𝑌) 

Again, NP-hardness doesn’t mean the problem is not in 𝑃, but it does provide strong evidence for that 
(so, the problem may not be in 𝑃) – below, a good cartoon with reference here. 

 

 

 

 

 

 

 

 

 

https://blog.codinghorror.com/the-girl-who-proved-p-np/
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There is a whole library of NP-Hard problems (complete list here): 

 

 

 

 

 
Our first NP-hardness problem: 

- Theorem: TSP (Traveling Salesperson Problem) is NP-Hard 
- Proof: Reduction from Hamiltonian circuit to TSP (𝐻𝑎𝑚 ≤𝑝 𝑇𝑆𝑃) 

Wait a minute: TSP is not a decision problem! No worries. Define 𝑇𝑆𝑃 as: 

- Input: 𝐺 = (𝑉, 𝐸) complete, undirected, weighted graph 𝑘 ∈ ℝ 
- Output: ∃ in 𝐺 a Hamiltonian circuit of cost ≤ 𝑘 (at most 𝑘)? 

We could try to use all possible 𝑘 values, but 𝑘 is not guaranteed to be polynomial; using only the 
cycles will not work either.  

What we actually do: Pick an arbitrary input instance for 𝐻𝑎𝑚. and create the following input for TSP:  

- 𝐺′ = (𝑉, 𝐸′) complete, undirected, weighted graph with: 

𝑤(𝑒 ∈ 𝐸′) = {
1, 𝑖𝑓 𝑒 ∈ 𝐸

+∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

If we use 𝑘 = 𝑛 this reduction takes poly-time ((𝑂(𝑛2)). Then: 

- if 𝐺 has an Hamiltonian circuit, then the TSP algorithm run on 𝐺′ returns an Hamiltonian circuit 
with cost 𝑛 

- if 𝐺 doesn’t have a Hamiltonian circuit, then any Hamiltonian circuit in 𝐺′ must have ≥ 1 edge 
not in 𝐺, hence of weight ∞. Hence, in this case, a TSP algorithm run on 𝐺′ returns a 
Hamiltonian circuit of cost > 𝑛 

If we had a fast algorithm for TSP we would also solve the Hamiltonian circuit problem.  

7.6 MAXIMUM INDEPENDENT SET 
 
There are more problems we can represent here: 

- Independent Set 
a. given a graph 𝐺 = (𝑉, 𝐸) an independent set in 𝐺 is a subset 𝐼 ⊆ 𝑉 with no edges 

between them  
- (Maximum) Independent Set (it’s considered trivial that the problem is to find the maximum 

one, so that’s why you find braces here – from now on, it will be only “Independent Set”) 
a. compute an independent set of maximum size 

  

https://en.wikipedia.org/wiki/Karp%27s_21_NP-complete_problems
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Theorem: Independent Set is NP-Hard  

Proof: Reduction from 3𝑆𝐴𝑇 (problem in logic) to 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑆𝑒𝑡 (problem in graphs) → 
3𝑆𝐴𝑇 ≤𝑝 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑆𝑒𝑡  

They seem totally unrelated problems, but let’s see what we have to do (figure here is from 
“Algorithms” book of Jeff Erickson, suggested in particular for the whole NP-Hardness chapter): 

 

 

 

 

 

What we are conjecturing is the following: 

 

 

 

 

 

 

 

Basically, the presence of an independent set in the constructed graph corresponds to a satisfying 
truth assignment for the 3SAT instance.  

Let’s see the main ideas, step by step (figure representing the scenario): 

- Pick an arbitrary 3𝐶𝑁𝐹 Boolean formula 𝑓 with 𝑘 clauses (input instance for 3SAT) 

(𝑎 ∨ 𝑏 ∨ 𝑐)  ∧  (𝑏 ∨ 𝑐 ∨ 𝑑)  ∧  (𝑎 ∨ 𝑐 ∨ 𝑑)  ∧  (𝑎 ∨ 𝑏 ∨ 𝑑) 

- Vertices (the graph is the input instance for Ind Set) 
a. Each vertex represents one literal in 𝑓 
b. A group of 3 vertices represents a clause (one of the 𝑘 clauses) – see figure 

i. Assignment request = choose vertices and make a request 
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- Edges: 
a. We add an edge between a literal and its inverse, for all the literals 
b. We add an edge between every pair of vertices that are in the same group 

There are two ways to think about 3SAT: (this reasoning coming from here) 

- 1. Find a way to assign 0/1 (FALSE/TRUE) to the variables such that the formula evaluates to 
true, that is each clause evaluates to TRUE 

- 2. Pick a literal from each clause and find a truth assignment to make all of them true. You will 
fail if two of the literals you pick are in conflict, i.e., you pick 𝑥𝑖 and ¬𝑥𝑖 

The reduction works this way: 

- The graph will have one vertex for each literal in a clause 
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one 

vertex from each clause, which will correspond to the literal to be set to true 

 
- Connect 2 vertices if they label complementary literals; this ensures that the literals 

corresponding to the independent set do not have a conflict 
 

  

 

- Take 𝑘 to be the number of clauses, ensuring they are all “covered” 

Remember what satisfiable means: 

- It asks whether the variables of a given Boolean formula can be consistently replaced by the 
values TRUE or FALSE in such a way that the formula evaluates to TRUE 

 

 

 

 

 

 

1) Idea: independent set represents conflicts ⇒ add an edge between every pair of vertices that 
are inconsistent (asking for opposite assignments to the same variable) 

a. In words: if you choose one vertex, it means it’s part of a clause 
b. You have to choose other two vertices which are sure to be different because they are 

a different independent set 

https://courses.engr.illinois.edu/cs374/fa2020/lec_prerec/23/23_2_0_0.pdf
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c. If you choose one vertex, you have to choose the complement 
i. in order to realize the AND inside the formula 

Observation: an independent set with ≥ 1 vertex in each group gives a satisfying truth assignment → 
should look for indipendent sets of size ≥ 𝑘 to say “YES, 𝑓 it’s satisfiable”. 

Issue: an independent set now is free to recruit multiple vertices from a group, so I might output “YES, 
𝑓 is satisfiable” even if this not true! ⇒ idea: force the recruitment of one vertex per group (what is 
represent already in final figure above and the process of said selection drawn on its right). 

2) Add one edge between every pair of vertices that one in the same group 

This marks the end of the intuition. Let’s go now into the details of a formal proof. 

Claim: 𝐺 contains an independent set of size exactly 𝑘 ⇔ the formula 𝑓 is satisfiable. 

Proof: 

1) Suppose 𝑓 is satisfiable. Pick any satisfying assignment. Each clause in 𝑓 has ≥ 1 𝑇𝑅𝑈𝐸 
literal. Thus, we can choose a subset 𝑆 of 𝑘 vertices in 𝐺 that contains exactly one vertex per 
group such that the corresponding 𝑘 literals are all 𝑇𝑅𝑈𝐸. The set 𝑆 is an independent set 
because it does not contain both endpoints of any edge of a group, nor of any edge that 
connects inconsistent literals (as it is derived from a consistent truth assignment) 

In simpler terms: a Boolean formula can be made 𝑇𝑅𝑈𝐸 because we suppose it to be satisfiable (and 
this works, since vertices are all different). This means we can choose a set of vertices in which we 
can make every assignment consistent (all different literals and make true each other clause) 

2) Suppose 𝐺 contains an independent set of size 𝑘. Each vertex in 𝑆 must be in a different group. 
Assign 𝑇𝑅𝑈𝐸 to each literal of 𝑆. Since inconsistent literals are connected by an edge, this 
assignment is consistent. Since 𝑆 contains 1 vertex per group, each clause in 𝑓 contains (at 
least) one 𝑇𝑅𝑈𝐸 literal ⇒ 𝑓 is satisfiable 

In simpler terms: Having an independent set, you must do a consistent assignment and so you start 
connecting literals starting from at least one at 𝑇𝑅𝑈𝐸. Since we have at least vertex per group, this 
works, given thanks to the independent set, they are all different.  

7.6.1 Exercises 

 
These are defined as easy by Scquizzato.  

- (Maximum) Clique: compute the longest complete subgraph in 𝐺 
a. Other name for a complete graph (from now on, the problem will be called Clique) 
b. Below, a useful figure to clearly see the problem 

Theorem: Clique is NP-Hard. 
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Solution (a nice graphical explanation here) 

Decision version → 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑆𝑒𝑡 ≤𝑝 𝐶𝑙𝑖𝑞𝑢𝑒 

- Input: ⟨𝐺 = (𝑉, 𝐸), 𝑘⟩ 
- Output: ∃ in 𝐺 a clique of size 𝑘? 

We operate a reduction from Maximum Independent Set (Ham. circuit is not 
really related to it; as you can see here, one can use 3SAT in order to show 
Clique is NP-complete). Figure here shows Independent Set. 

- Intuition 
a. Clique: vertices with all edges between them 
b. Ind. set: vertices with no edges between them 

 
- Definition 

a. Given a graph 𝐺 = (𝑉, 𝐸), its edge-complement 𝐺 = (𝑉, 𝐸) has the same vertex 𝑉 and 

an edge set 𝐸 such that (𝑢, 𝑣) ∈ 𝐸 ⇔ (𝑢, 𝑣) ∉ 𝐸 (so, no common edges) 
 

- Observation 

a. A set of vertices 𝑆 is independent in 𝐺 ⇔ 𝑆 is a clique in 𝐺 ⇒ the largest independent 

set in 𝐺 has the same size as the largest clique in 𝐺 

To make it super complete, let’s draw the schema of what we are doing – takes 𝑂(𝑛2) time, given the 
constant work needed to traverse all edges and vertices: 

 

 

 

 

 

To actually write it formally, so you understand how to prove it, coming from here: 

 

 

 

 

 
Definition: a vertex cover of a graph is a set of vertices that includes that at least 
one endpoint of every edge of the graph 

b. Side figure represents such, to be clearer to you 

  

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/clique_to_independentSet.html
https://www.cs.cmu.edu/~avrim/451f11/lectures/lect1108.pdf
https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/clique_to_independentSet.html
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Related problem is: 

- (Minimum) Vertex Cover: compute the smallest vertex in a given graph 
a. From now on, only called Vertex Cover 

Theorem: Vertex Cover is NP-Hard. 

Solution (once again, a nice graphical explanation of this one here) 

Decision version → 𝑉𝑒𝑟𝑡𝑒𝑥 𝐶𝑜𝑣𝑒𝑟 ≤𝑝 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑆𝑒𝑡 

- Input: ⟨𝐺 = (𝑉, 𝐸), 𝑘⟩ 
- Output: ∃ in 𝐺 a vertex cover of size 𝑘? 

We operate a reduction from Maximum Independent Set (once again, this is the most similar problem 
to the one we are proving). So, we have 𝑉𝑒𝑟𝑡𝑒𝑥 𝐶𝑜𝑣𝑒𝑟 ≤𝑝 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑆𝑒𝑡. 

- Observation 
a. A set of vertices 𝑆 is independent in 𝐺 ⇔ 𝑉 ∖ 𝑆 is a vertex 

cover of 𝐺 
i. In blue there is an independent set (actually the 

biggest one) 
ii. The other ones are the vertex cover 

⇒ The longest independent set in 𝐺 has size 𝑛 − 𝑘, where 𝑘 is the size of the smallest 
vertex cover of 𝐺 

Independent set: 

- Input: ⟨𝐺 = (𝑉, 𝐸), 𝑛 − 𝑘⟩ 
- Output: ∃ in 𝐺 an independent set of size 𝑛 − 𝑘? 

Once again, let’s represent this in a complete way: 

 

 

 

 

 

To actually write it, follow this one: 

 

 

 

 

 

 

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/independentSet_to_vertexCover.html
https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/independentSet_to_vertexCover.html
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Exercise 

- Show that: 
a. 𝑉𝑒𝑟𝑡𝑒𝑥 𝐶𝑜𝑣𝑒𝑟 ≤𝑝 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑆𝑒𝑡 
b. 𝐶𝑙𝑖𝑞𝑢𝑒 ≤𝑝 𝑉𝑒𝑟𝑡𝑒𝑥 𝐶𝑜𝑣𝑒𝑟  

⇒ these 3 problems are equivalent. 

Solution (official = shorter) 

- “Same” as 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑆𝑒𝑡 ≤𝑝 𝑉𝑒𝑟𝑡𝑒𝑥 𝐶𝑜𝑣𝑒𝑟 
 

- We can consider the following figure for this one 
a. Consider a clique of size 4 in the middle (left) 
b. If you take the complement of this one (right) 

 

- 𝐺 has a clique of size 𝑘 ⇔ 𝐺 has a vertex over of size 𝑛 − 𝑘 
a. For the proof: see the book (§ - p. 1106 of 4th edition – theorem 34.12) 

 

 

 

Solution (longer and properly explained) 

a. Suppose that we have an efficient algorithm for solving Independent Set, it can simply be used 
to decide whether 𝐺 has a vertex cover of size at most 𝑘, by asking it to determine whether G 
has an independent set of size at least 𝑛 –  𝑘 

Given an instance of the Vertex Cover problem, consisting of a graph 𝐺 = (𝑉, 𝐸) and an integer 𝑘 
representing the size, we construct an instance of the Independent Set problem as follows: 

1. Let 𝐺′ = 𝐺 (i.e., the graph for the Independent Set instance is the same as the original graph 
G). 

2. Let 𝑘′ = |𝑉| − 𝑘 (i.e., the target size of the independent set is the number of vertices in 𝐺 minus 
the size of the vertex cover 𝑘). 

To show that this reduction is correct, we need to prove the following: 

1. If 𝐺 has a vertex cover of size ≤ 𝑘, then 𝐺′ has an independent set of size ≥ 𝑘′. 

2. If 𝐺′ has an independent set of size ≥ 𝑘′, then G has a vertex cover of size ≤ 𝑘. 

Let’s prove both (1) and (2): 

- Suppose 𝐶 is a vertex cover of size ≤ 𝑘 in 𝐺. Then, the set 𝑉 \ 𝐶 is an independent set in 
𝐺′ (since 𝐶 covers all the edges, no two vertices in 𝑉 \ 𝐶 can be adjacent). Furthermore, 
|𝑉 \ 𝐶|  ≥ |𝑉| − 𝑘 = 𝑘′. 
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- Suppose 𝑆 is an independent set of size ≥ 𝑘′ in 𝐺′. Then, the set 𝑉 \ 𝑆 is a vertex cover in 𝐺 
(since 𝑆 is independent, every edge must have at least one endpoint in 𝑉 \ 𝑆). Furthermore, 
|𝑉 \ 𝑆| ≤  |𝑉| − 𝑘′ = 𝑘. 
 

b. To show that 𝐶𝑙𝑖𝑞𝑢𝑒 ≤𝑝 𝑉𝑒𝑟𝑡𝑒𝑥 𝐶𝑜𝑣𝑒𝑟, we need to provide a polynomial-time reduction from 
the Clique problem to the Vertex Cover problem. Here's one way to construct the reduction: 

Given an instance of the Clique problem, consisting of a graph 𝐺 =  (𝑉, 𝐸) and an integer 𝑘, we 
construct an instance of the Vertex Cover problem as follows: 

1. Let 𝐺′ =  𝐺 (i.e., the graph for the Vertex Cover instance is the same as the original graph G). 

2. Let 𝑘′ = |𝑉| − 𝑘 (i.e., the target size of the vertex cover is the number of vertices in 𝐺 minus the 
size of the clique 𝑘). 

To show that this reduction is correct, we need to prove the following: 

1. If 𝐺 has a clique of size ≥ 𝑘, then 𝐺′ has a vertex cover of size ≤ 𝑘′. 

2. If 𝐺′ has a vertex cover of size ≤ 𝑘′, then 𝐺 has a clique of size ≥ 𝑘. 

Proof of (1): Suppose 𝐶 is a clique of size ≥ 𝑘 in 𝐺. Then, the set 𝑉 \ 𝐶 is a vertex cover in 𝐺′ (since 𝐶 is 
a clique, every edge must have at least one endpoint in 𝑉 \ 𝐶). Furthermore, |𝑉 \ 𝐶| ≤ |𝑉| − 𝑘 = 𝑘′. 

Proof of (2): Suppose 𝑆 is a vertex cover of size ≤ 𝑘′ in 𝐺′. Then, the set 𝑉 \ 𝑆 is a clique in 𝐺 (since 𝑆 is 
a vertex cover, every edge must have both endpoints in 𝑉 \ 𝑆, which means 𝑉 \ 𝑆 is a clique). 
Furthermore, |𝑉 \ 𝑆| ≥ |𝑉| − 𝑘′ = 𝑘. 
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8 APPROXIMATION ALGORITHMS 

These kinds of algorithms are are efficient algorithms that find approximate solutions to optimization 
problems (in particular NP-hard problems; by hypothesis, 𝑃 ≠ 𝑁𝑃, otherwise this theory it’s useless) 
with provable guarantees on the distance of the returned solution to the optimal one. They solve 
problems not solvable in polynomial time using approximation. 

An optimization problem can be described as follows: 

Π: 𝐼 × 𝑆 

where Π = approximation problem, 𝐼 = set of inputs and 𝑆 = set of solutions. 

𝑐: 𝑆 → ℝ+ 

Above, the cost function 𝑐 maps each solution to a positive real number. 

∀𝑖 ∈ 𝐼, 𝑆(𝑖) = {𝑠 ∈ 𝑆: 𝑖 Π𝑠} 

Above, the the set of feasible solutions, and our goal follows. 

𝑠∗ ∈ 𝑆(𝑖) 𝑎𝑛𝑑 𝑐(𝑠∗) = minmax 𝑐(𝑆(𝑖)) 

Here, we want to find the best solution 𝑠∗ for a minimization/maximization problem. Specifically, we 
want to find it for the specific instance of that problem (𝑖Π𝑠).  

8.1 APPROXIMATION 
 
Given a feasible solution 𝑠 ∈ 𝑆(𝑖), which is OK if 𝑠 ≠ 𝑠∗, we would want the following: 

1) Guarantee on the quality of 𝑠 → approximation factor 
a. By default for a maximization problem 
b. By excess for a minimization problem 

2) Guarantee on the complexity: polynomial-time algorithm 

Definition: Let Π be an optimization problem and let 𝐴Π be an algorithm for Π that returns, ∀𝑖 ∈
𝐼, 𝐴Π(𝑖) ∈ 𝑆𝑖 (in other words, the choice the algorithm makes). We say that 𝐴Π has an approximation 
factor (or ratio) of 𝜌(𝑛) if ∀𝑖 ∈ 𝐼 such that |𝑖| = 𝑛 we have (for each one, the concrete translation in 
problems): 

- Minimization problem (basically, an explicit lower-bound of the optimal solution) 

𝑚𝑖𝑛: 
𝑐(𝐴Π(𝑖))

𝑐(𝑠∗(𝑖))
≤ 𝜌(𝑛) 

𝐺𝑟𝑒𝑒𝑑𝑦

𝑂𝑃𝑇
≤ 𝜌(𝑛) 

So, in a logic of a X-approximation algorithm 𝑋
′

𝑥∗
≤ 𝜌: 

a) Upper bound to the cost of 𝑋′ (which is our solution, greedy choice made by us) 

b) Lower bound to the cost of 𝑋∗ (which is the optimal solution, selected by the algorithm) 
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As a matter of fact, we have for a min problem: 

𝑐(𝑠∗(𝑖)) ≥
𝑐(𝐴Π(𝑖))

𝜌(𝑛)
 

- Maximization problem (basically, an explicit upper-bound of the optimal solution) 

𝑚𝑎𝑥: 
𝑐(𝑠∗(𝑖))

𝑐(𝐴Π(𝑖))
≤ 𝜌(𝑛) 

𝑂𝑃𝑇

𝐺𝑟𝑒𝑒𝑑𝑦
≤ 𝜌(𝑛) 

As a matter of fact, we have for a min problem: 

𝑐(𝑠∗(𝑖)) ≤ 𝜌(𝑛) ∗ 𝑐(𝐴Π(𝑖)) 

So, in a logic of a X-approximation algorithm 𝑋
∗

𝑋′
≤ 𝜌: 

a) Upper bound to the cost of 𝑋∗ (which is the optimal solution, selected by the algorithm) 

b) Lower bound to the cost of 𝑋′ (which is our solution, greedy choice made by us) 

Here, we assume that 𝑐 maps each feasible solution to a real number ≥ 1 ⇒ 𝜌(𝑛) ≥ 1 always.  

The inequality can be easily rewritten as a single expression: max {
𝑐(𝐴Π(𝑖))

𝑐(𝑠∗(𝑖))
,
𝑐(𝑠∗(𝑖))

𝑐(𝐴Π(𝑖))
} ≤ 𝜌(𝑛) 

- If I have an algorithm which guarantees me I won’t pay more than a factor than the optimal 
solution → this would be very good 

Goal: 𝜌(𝑛) = 1 + 𝜖, for the most precise 𝐴Π
∗  and 𝜖 as small as possible. Why do we care? So to choose 

the problem. We’ll get: 

- 𝜖 = 1 for the Vertex Cover problem 
- 𝜖 = log2 𝑛 for the Set Cover problem 

Even if we don’t know 𝑠∗, we are able to estimate the ratio precisely. If the algorithm has an 
approximation factor of 2, it is called 2-approximation algorithm, for instance. 

Much stronger approximation: 𝜌(𝑛) = 1 + 𝜖, ∀𝜖 > 0. 

- There exists problems for which we can prove that 𝜌(𝑛) = Ω(𝑛𝜖) 
a. not smaller than 𝑛𝜖  ∀𝜖 < 1 (e.g., clique) 

Definition: An approximation scheme for Π is an algorithm with 2 inputs 𝐴Π (𝑖, 𝜖) that ∀𝜖 is a (1 + 𝜖)-
approximation.  

- In this case we just have to choose how much approximation we want by tuning the value of 𝜖 
- In other words: fixed an instance 𝑖 of size 𝑛, the quality is 𝜖 (whatever 𝜖 is) 

Definition: An approximation scheme is polynomial (PTAS) is 𝐴Π(𝑖, 𝜖) is polynomial in |𝑖|, ∀𝜖 fixed. The 
smaller the value of 𝜖, the longer will take the computation (but still polynomial). 
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(To be pinpoint perfect and formal: we want polynomial schemes both in the input size but also in 1
𝜖

, 

which describes it as fully polynomial, making the approach generally better). 

More notes I collected on the topic. 

For approximation algorithms you usually look at the two bounds separately: 

- For the upper bound, that is, how far at most the approximated algorithm can get from the 
optimal one, you will have to do some proving, usually you have to look for some property of 
the algorithm that maintains some bound during its execution and that then allows you to 
draw the conclusion 

a. Unfortunately, however, this depends very much on the algorithm itself and there is no 
general way to find it 

This means (for minimization problems): 

|𝑉′| ≤ 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

- For the lower bound, on the other hand, it is generally always a matter of finding some input of 
size 𝑛 (where 𝑛 must be variable) which always leads to the worst case of the greedy algorithm 

This means (for minimization problems): 

|𝑉∗| ≥ 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 

Some general structure, studying many problems, I found: 

𝐺𝑅𝐸𝐸𝐷𝑌 ≤  𝑃𝑅𝑂𝑃𝐸𝑅𝑇𝑌 ≤  𝑂𝑃𝑇 

Or (using VC = min problem = 2-approx algo) 

𝑉′ ≤ 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 ≤ 2|𝑉∗| 

which is also basically (the greedy is half the property and the optimal is double the property): 

𝑉′

2
≤ 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 ≤ 2|𝑉∗| 

Usually, anyway, it’s enough to know: 

|𝑉′| ≤ 2|𝑉∗| 

In general, the structure followed by the professor is the following one: 

1) Lower bound to the cost of 𝑉∗ 

𝑉∗ = This is the absolute best (minimum) solution that can be achieved for the problem. It represents 
the lowest possible value of the objective function (e.g., cost, length, weight, etc.) that satisfies all 
constraints of the problem. 

The algorithm respects a property. The optimal choice would definitely at least respect that property 
and then select the least possible. So, in terms of the algo, it's the worst possible choice over the 
minimum one (so, to select all, and so to respect the general problem property).  

Any property or solution provided by the algorithm must respect and cannot surpass this benchmark 
(V*) in terms of minimization.  
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2) Upper bound to the cost of 𝑉′ 

𝑉′ = This is the solution provided by the greedy or approximation algorithm. While this solution is 
feasible (i.e., it satisfies the problem's constraints), it may not be the optimal (minimum possible) 
solution. Instead, it is typically easier to compute and close to the optimal. 

This means that, found the general property to respect, the greedy choice made by the algo is at most 
that one. 

Instead, if the problem asks you to 

- Prove a general lower bound: 

→ Demonstrate that there exist instances where the algorithm performs at the approximation limit, 
indicating the tightness of the bound 

→ Construct an input instance designed to force the algorithm into a worst-case scenario. 

➔ |𝑉′| = 2 ∗ |𝑉∗| 

Show one “bad” input instance according to the nature of the problem – that’s it.   
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8.2 APPROXIMATION ALGORITHM FOR VERTEX COVER 
 
Remember Vertex Cover = set of vertices including at least one endpoint of every edge – compute the 
smallest. What is the very first algorithm you can think about? One way to design such algorithm is 
using a greedy approach: 

- Select the vertex with the highest degree 
- “Remove” the touched edges 
- Repeat 

Consider the following figure – take 3 as the highest, then 2 and 1 and remove touched edges as said: 

 

 

 

 

 

Unfortunately, for this algorithm it can be proven that 𝜌(𝑛) = Ω(log(𝑛)). 

How to prove a LB (Lower Bound)? It’s enough to show one “bad” input instance. 

Exercise: show a LB on 𝜌(𝑛) for this algorithm – the higher, the better (log (𝑛) is difficult) 

(Hint: try to prove the best you can – it should be a constant factor) 

We would have to try a new algorithm (again, greedy approach): 

- Choose any edge 
- Add its endpoints to the solution 
- “Remove” the covered edges 
- Repeat 
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We’ll show that this is a 2-approximation algorithm (which returns a solution whose cost is at most 
twice the optimal):  

procedure 𝐴𝑝𝑝𝑟𝑜𝑥_𝑉𝑒𝑟𝑡𝑒𝑥_𝐶𝑜𝑣𝑒𝑟(𝐺)  

 𝑉′ = ∅ 

𝐸′ = 𝐸  

while E′ ≠ ∅: do  

 𝐿𝑒𝑡 (𝑢, 𝑣) 𝑏𝑒 𝑎𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑒𝑑𝑔𝑒 𝑜𝑓 𝐸′ 

 𝑉′ = 𝑉′ ∪ {𝑢, 𝑣} 

 𝐸′ = 𝐸′ ∖ {(𝑢, 𝑧), (𝑣, 𝑤)} 

 // 𝑟𝑒𝑚𝑜𝑣𝑒 𝑒𝑑𝑔𝑒𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑢 𝑎𝑛𝑑 𝑣 𝑎𝑠 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠 

return 𝑉′  

Complexity: 𝑂(𝑛 +𝑚) 

8.2.1 Analysis 

 
We’ll show (because this is a minimization problem – remember the structure given above) how to get 
the quality of the returned solution by the algorithm:  

|𝑉′|

|𝑉∗|
≤ 2 

or in inequality terms: 

|𝑉′| ≤ 𝑐ℎ𝑜𝑖𝑐𝑒 ≤ 2|𝑉∗| 

Given 𝐴 = set of selected edges:  

- 𝐴 is a matching: ∀𝑒, 𝑒′ ∈ 𝐴 ⇒ 𝑒 ∩ 𝑒′ = ∅ 
a. This is also called “independent edge set” 
b. I.e. set of edges with no vertices in common 
c. Every edge is disjoint, so there is no couple of edges 

sharing a common node 
- 𝐴𝑝𝑝𝑟𝑜𝑥_𝑉𝑒𝑟𝑡𝑒𝑥_𝐶𝑜𝑣𝑒𝑟 selects a maximal matching: ∀ edge 

𝑦, 𝐴 ∪ 𝑦 is not a matching 
a. This is a matching which cannot be increased (also 

maximal ≠ maximum) 
i. Not possible to select an edge which touches other vertices 

A matching set solves the Vertex cover problem (not in the most efficient way 
possible, but in a sound way. 

On the side, an example of such thing.   
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Proof: 

1. Lower bound to the optimal solution 𝑉∗ 

What can one say about |𝑉∗| 𝑣𝑠 |𝐴|?  

𝐴 is a matching ⇒ in 𝑉∗ there must be ≥ 1 vertex ∀ edge of 𝐴 (right figure) 

In whatever vertex cover, particularly 𝑉∗, we have to cover all graph edges and, in particular, all 𝐴 
edges. But 𝐴 is a matching (so, every edge of 𝐴 is disjoint), so in 𝑉∗ there must be at least a vertex for 
each edge (𝑢, 𝑣) ∈ 𝐴, given we need to check them all: 

|𝑉∗| ≥ |𝐴| 

In order to cover the edges in 𝐴, any vertex cover - in particular, an optimal cover 𝑉∗ - must include at 
least one endpoint of each edge in 𝐴. No two edges in 𝐴 share an endpoint, since once an edge is 
picked, all other edges that are incident on its endpoints are deleted from 𝐸′. Thus, no two edges in 𝐴 
are covered by the same vertex from 𝑉∗, meaning that for every vertex in 𝑉∗, there is at most one edge 
in 𝐴, giving the lower bound. 

2. Upper bound to the algorithm solution 𝑉′ 

What can one say about |𝑉′| 𝑣𝑠 |𝐴|?  

-  |𝑉′| ≤ 2|𝐴|, or even better |𝑉′| = 2|𝐴| by construction and so: 

(1. + 2.) ⇒ |𝑉′| ≤ 2|𝐴| ≤ 2|𝑉∗| ⇒ 𝜌(𝑛) =
|𝑉′|

|𝑉∗|
≤ 2 

This concludes the proof: 𝐴𝑝𝑝𝑟𝑜𝑥_𝑉𝑒𝑟𝑡𝑒𝑥_𝐶𝑜𝑣𝑒𝑟 is a 2-approximate algorithm for 𝑉𝑒𝑟𝑡𝑒𝑥 𝐶𝑜𝑣𝑒𝑟. Also: 

- It can never be that this algorithm returns a set of nodes twice as bad as the minimal set 
- It can never be larger than twice the theoretical minimum set 
- It is not possible to improve this approximation (tight approximation) 

a. That depends on your definition of approximation ratio 
b. Normally the approximation ratio is defined as the worst ratio between optimal 

solution and the one produced by your algorithm 
c. If this is the case, all you need to show that the ratio is tight is come up with one bad 

example, which shows it works for all sizes 

Specifically, if the ratio is 2 we have a 2-approximation algorithm, meaning it gives solutions that never 
cost more than twice that of optimal if it is a minimization problem, or never provide less than half the 
optimal value if it is a maximization problem. 

This is a common strategy in approximation proofs: we don't know the size of the optimal solution, but 
we can set a lower bound on the optimal solution and relate the obtained solution to this lower bound. 

Exercise: show that the approximation factor of 𝐴𝑝𝑝𝑟𝑜𝑥_𝑉𝑒𝑟𝑡𝑒𝑥_𝐶𝑜𝑣𝑒𝑟 is exactly 2 

State of the art of this problem: 

- ∃ 2 − 𝜃(
1

√log(𝑛)
) approximation algorithm 

- Vertex cover cannot be approximated better than ∼ 1.36 
- Conjecture: cannot be approximated better than 2 
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Keep in mind what the CLRS says.  

- At first, you might wonder how you can possibly prove that the size of the vertex cover returned 
by 𝐴𝑝𝑝𝑟𝑜𝑥_𝑉𝑒𝑟𝑡𝑒𝑥_𝐶𝑜𝑣𝑒𝑟 is at most twice the size of an optimal vertex cover, when you don’t 
even know the size of an optimal vertex cover. 

- Instead of requiring that you know the exact size of an optimal vertex cover, you find a lower 
bound on the size. 

 

 

 

 

 

 

 

 

 

 

 

8.2.2 Exercises 

 
Exercise: show a LB on 𝜌(𝑛) (so, 2 I add) for this algorithm – the higher, the better (log (𝑛) is difficult) 

(Hint: try to prove the best you can – it should be a constant factor) 

Solution 

One possible idea is the following: 

- take a round of vertices 
- consider levels of vertices adding more 

We call this problem: “degree-based greedy approximation for vertex cover”. Consider the following:  

 

 

 

 

 

 



92  Advanced Algorithms Simple (for real) 
 

Written by Gabriel R. 

This image demonstrates a general idea for constructing a "bad" input instance to show a lower bound 
on the approximation ratio. The approach is to create a graph with multiple levels, where each level 
has more vertices than the previous level, but with fewer edges connecting to the next level. 

The reasoning goes like this: 

• Start with a single vertex (labeled "Greedy" in the image) 
• At the next level, add a few vertices (e.g., 3) that are all connected to the first vertex 
• At the next level, add more vertices (e.g., 8)  

• that are only connected to the previous level vertices 
• Continue adding more and more vertices at each level 

• with fewer connections to the previous level 
 
The idea is that the greedy algorithm will pick all the vertices in the first level, then all the vertices in 
the second level, and so on, resulting in a large vertex cover. However, the optimal vertex cover would 
be to pick the intermediate level vertices, which can cover all the edges with fewer vertices. 

The greedy algorithm, by design, will select the vertex with the highest degree at each step. This 
means: 

• It will select the single vertex at the first level. 

• Then, it will select all 𝑛
3
+ 2 vertices at the second level (since they have the highest degree at 

that point). 

• Next, it will select all 𝑛
3
+ 2 vertices at the third level (since they are now the highest degree 

vertices remaining). 

Therefore, the total size of the vertex cover produced by the greedy algorithm is: 1 + (𝑛
3
 +  2) +

 (
𝑛

3
+ 2) =

2𝑛

3
+ 5 

However, the optimal vertex cover for this graph is to select the 𝑛
3
+ 2 vertices at the second level. This 

covers all edges in the graph using only 𝑛
3
+ 2 vertices. 

By comparing the greedy solution size (2𝑛
3
+ 5) to the optimal solution size (𝑛

3
+ 2), we get an 

approximation ratio of: 

𝜌 = (
2𝑛

3
+ 5) / (

𝑛

3
+ 2) ≈ 2 (for large values of 𝑛) 

The following considers a simpler idea instead: 
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1. In a bipartite graph 𝐺 = (𝑈, 𝑉, 𝐸), where 𝑈 and 𝑉 are the two disjoint vertex sets, and 𝐸 
contains edges only between 𝑈 and 𝑉 

2. Consider the vertex 𝑣 in 𝑈 that has the maximum degree (i.e., connected to the most vertices 
in V) 

3. The greedy algorithm will select 𝑣 and all its neighbors in 𝑉 

4. However, the optimal solution is to select only the neighbors of 𝑣 in 𝑉 (and not 𝑣 itself) 

5. This gives a lower bound on the approximation ratio 𝜌 ≥ (1 + 𝑑𝑒𝑔(𝑣)) / 𝑑𝑒𝑔(𝑣) = 1 +
1/𝑑𝑒𝑔(𝑣) 

The key observation is that by selecting the highest degree vertex 𝑣 in 𝑈, the greedy algorithm is 
making the worst possible choice compared to the optimal solution of just selecting 𝑣's neighbors in 
𝑉. This lower bound holds because: 

• Greedy picks 𝑣 and 𝑑𝑒𝑔(𝑣) vertices in 𝑉, so size is 1 + 𝑑𝑒𝑔(𝑣) 

• Optimal just picks the 𝑑𝑒𝑔(𝑣) vertices in 𝑉 that are neighbors of 𝑣 

So the approximation ratio is at least (1 + 𝑑𝑒𝑔(𝑣)) / 𝑑𝑒𝑔(𝑣), which approaches 1 + 1/𝑑𝑒𝑔(𝑣) as 
𝑑𝑒𝑔(𝑣) grows large.  

- So, we show a bad input instance; instead of directly choosing the neighbors, we choose the 
highest degree vertices 

a. which when running 𝐴𝑝𝑝𝑟𝑜𝑥_𝑉𝑒𝑟𝑡𝑒𝑥_𝐶𝑜𝑣𝑒𝑟 would select iteratively edges  
i. then removing the incidents ones 

b. The selection would be suboptimal, given it would only have to select the neighbors 

Exercise: show that the approximation factor of 𝐴𝑝𝑝𝑟𝑜𝑥_𝑉𝑒𝑟𝑡𝑒𝑥_𝐶𝑜𝑣𝑒𝑟 is exactly 2. 

Solution 

 

 

Consider the algorithm: 

- The algorithm starts with an empty set 𝑉′ (vertex cover set) and the original edge set 𝐸′. It 
iteratively selects an arbitrary edge (𝑢, 𝑣) from 𝐸′ and adds both vertices 𝑢 and 𝑣 to the vertex 
cover set 𝑉′. It then removes all edges from 𝐸′ that are incident on either 𝑢 or 𝑣 

- The algorithm continues this process until 𝐸′ becomes empty, meaning all edges have been 
covered by the selected vertices in 𝑉′. Finally, it returns 𝑉′ as the approximate vertex cover 

The key observation is that for each edge (𝑢, 𝑣) selected, at least one of 𝑢 or 𝑣 must be present in the 
optimal vertex cover 𝑂𝑃𝑇. This is because 𝑂𝑃𝑇 must cover all edges, and (𝑢, 𝑣) is an edge in the 
original graph. 

Therefore, during each iteration when an edge (𝑢, 𝑣) is processed, the algorithm adds at most two 
vertices to V', while the optimal vertex cover 𝑂𝑃𝑇 must contain at least one of these two vertices. 
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Consequently, we can establish the following inequality: 

|𝑉′| ≤  2 ∗ |𝑂𝑃𝑇| 

The bound is tight; ensuring the greedy choice is 2 vertices and the optimal choice is just one vertex, 

we will have that |𝑉
′|

|𝑂𝑃𝑇|
= 2 ≤ 2. 

(Also, from past years of notes in the italian version of this course) 

No, it can’t be improved: this algorithm can, in some cases, return exactly twice the number of 
minimal nodes. 

 

 

 

 

 

 

 

 

 

 
Another example is the following one, in which the order of choice of edges is unlucky, always a 
multiple of 2 given the minimum size, in this case 3. 
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Exercise: modify 𝐴𝑝𝑝𝑟𝑜𝑥_𝑉𝑒𝑟𝑡𝑒𝑥_𝐶𝑜𝑣𝑒𝑟 so as to select only one vertex instead of both of them. How 
would 𝜌 become?  

(Note: in the CLRS this is also called “Give an example of a graph for which 𝐴𝑝𝑝𝑟𝑜𝑥_𝑉𝑒𝑟𝑡𝑒𝑥_𝐶𝑜𝑣𝑒𝑟 
always yields a suboptimal solution”) 

Solution 

  

 

 

 

 

 
 
Consider the star graph, a bipartite graph with one internal node (given 𝑛 vertices) and 𝑛 − 1 leaves. 
The optimal choice would select one vertex then the greedy selects the leaf nodes. This would imply 
removing all edges connected to the intermediate node and, as such, we guarantee to select one 
vertex at a time, ensuring 𝜌 ≥ 𝑛 − 1. Selecting only one vertex can be really bad unless you trick the 
algorithm a bit.  

In this structure: 

1. The optimal vertex cover (𝑂𝑃𝑇) contains only the central vertex, covering all 𝑛 − 1 edges. So 
𝑂𝑃𝑇 = 1. 

2. The modified approximation algorithm selects one endpoint vertex per edge. For the star 
graph, this means it will select all 𝑛 − 1 leaf vertices. 

3. Therefore, the size of the approximate vertex cover produced by the algorithm is |𝐶|  =  𝑛 − 1. 

4. Since 𝑂𝑃𝑇 = 1 and |𝐶| = 𝑛 − 1, the approximation ratio 𝜌 = |𝐶| / 𝑂𝑃𝑇 = (𝑛 − 1) / 1 =  𝑛 − 1. 

So for the star graph, the approximation ratio 𝜌 achieved by the modified algorithm is exactly 𝑛 − 1, 
which matches the lower bound claim of 𝜌 ≥ 𝑛 − 1 in the image. 

More completely (looking online): 

- the 𝐴𝑝𝑝𝑟𝑜𝑥_𝑉𝑒𝑟𝑡𝑒𝑥_𝐶𝑜𝑣𝑒𝑟 algorithm works by iteratively selecting an edge, adding both its 
endpoints to the vertex cover, and removing all the edges incident to these two vertices 

- in a star graph, the algorithm would end up selecting all the leaf nodes along with the central 
node, yielding a suboptimal solution 

o as the optimal solution would only include the central node 
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Exercise (done in previous years) 

 

 

 

 

 

 

As always, the counterexample is the star graph:  

 

 

 

 

 

 

 

 

 

 
Exercise (done in previous years)  

𝐺 → 𝐺𝑐 contains all edges not in 𝐺. 𝑉∗: vertex cover of 𝐺 ⇒ 𝑉 ∖ 𝑉∗ is a clique of maximum size in 𝐺𝑐. Is 
it possible to approximate CLIQUE using a 2-approx algorithm for Vertex Cover? 

Solution 

No (reductions between problem do not preserve the approximation factor) 

𝐺 → |𝐶𝑚𝑎𝑥| =
𝑛

2
 

in 𝐺𝑐, |𝑉∗| = 𝑛 − 𝑛

2
=
𝑛

2
.  

Apply 𝐴𝑝𝑝𝑟𝑜𝑥_𝑉𝐶(𝐺𝑐) → 𝑉′ it could be that |𝑉′| = 𝑛 that is 2|𝑉∗| 

⇒ returns a clique of size 𝑛 − 𝑛 = 0 

⇒ no approx for no 𝜌 

In other words: this works if the vertex cover is of maximum size, but the transformation does not 
preserve the approximation.   
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9 TSP & METRIC TSP 

(Further readings on this one: here) 

9.1 TRAVELLING SALESPERSON PROBLEM (TSP) 
 
Definition: Given a complete, undirected (𝑐(𝑢, 𝑣) = 𝑐(𝑣, 𝑢) = symmetric) graph 𝐺 = (𝑉, 𝐸) and a 
function 𝑤: 𝐸 → ℝ+, output a tour 𝑇 ⊆ 𝐸 (i.e. a cycle that passes through every vertex exactly once) 
minimizing ∑ 𝑤(𝑒)𝑒∈𝑇 .  

The problem answers to: “Given a list of cities and the distances between each pair of cities, what is 
the shortest possible route that visits each city exactly once and returns to the origin city?” 

Collectively: 

𝑇 ⊆ 𝐸 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 ∑𝑤(𝑒)

𝑒∈𝑇

 

- 𝑤: 𝐸 → ℝ+ : we will work only on positive weights 
a. We can do this without loss of generality (wlog) because every TSP tour has the same 

number of edges ⇒ we can add a large weight to each edge, such that edges have non-
negative weights 

Theorem: For any function 𝜌(𝑛) that can be computed in time polynomial in 𝑛, there is no polynomial-
time 𝜌(𝑛) − approximation algorithm for TSP with 𝜌 = 𝑂(1), unless 𝑃 = 𝑁𝑃.  

Proof: We will use a reduction from the Hamiltonian Circuit, so 𝐻𝑎𝑚 ≤𝑝 𝑇𝑆𝑃. The reduction function 
is 𝑓: ⟨𝐺 = (𝑉, 𝐸)⟩ → ⟨𝐺𝐾 = (𝑉, 𝐸𝐾), 𝑐⟩. This is a generic instance which we want to reduce to: a simple 
graph and not necessarily complete. So, given 𝑛 = |𝑉|, build the following reduction: 

- 𝐺 → 𝐺′ = (𝑉, 𝐸′) complete 

- 𝑤(𝑒 ∈ 𝐸′) = {
 1,              𝑒 ∈ 𝐸                 
𝜌𝑛 + 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         

 

a. Idea: weights are far apart 
b. 1 means “adding weight 1 to all edges that were there before” 

Now, actually proving the theorem: 

1) If 𝐺 has an Hamiltonian circuit ⇒ ∃ a tour of cost 𝑛 ⇒ TSP algorithm’s run on 𝐺′ returns a tour 
of cost ≤ 𝜌𝑛 (so, there’s a cycle passing through all edges and its max cardinality can be the 
number of vertices) 

2) If 𝐺 has no Hamiltonian circuit ⇒ the TSP algorithm run on 𝐺′ returns a tour of cost   

(𝜌𝑛 + 1) + (𝑛 − 1) = 𝜌𝑛 + 1 > 𝜌𝑛  

Thus, if we could approximate TSP within a factor of 𝜌 in poly-time, then we would have a poly-time 
algorithm for Hamiltonian Circuit.  

  

https://www.designofapproxalgs.com/
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- So, suppose that we apply the approximation algorithm 𝐴 on 𝐺′  
a. Because 𝐴 is guaranteed to return a tour of cost no more than 𝜌 times the cost of an 

optimal tour, if 𝐺 contains a Hamiltonian cycle, then 𝐴 must return it 
b. If 𝐺 has no Hamiltonian cycle, then 𝐴 returns a tour of cost more than 𝜌𝑛. Therefore, 

we can use 𝐴 to solve the Hamiltonian-cycle problem in polynomial time 

So, we’ve shown NP-Hardness not for the original problem, but for the approximate version of the 
problem.  

9.2 METRIC TSP 
 
Metric TSP is a special case of TSP where the weight function 𝑤 satisfies the triangle inequality: 

∀ 𝑢, 𝑣, 𝑧 ∈ 𝑉, it holds that 𝑤(𝑢, 𝑣) ≤ 𝑤(𝑢, 𝑧) + 𝑤(𝑧, 𝑣) 

The following is an example of that: 

 

 

 

This inequality is satisfied for geometric graphs, where the vertices are points in the plane (or some 
higher-dimensional space), edges are straight line segments, and lengths are measured in the usual 
Euclidean metric. 
 
So, the path from 𝑢 to 𝑣 is shorter than any other path that passes through another vertex (more 
convenient than using (𝑢, 𝑧) and (𝑧, 𝑣) edges (travel directly rather than indirectly). 

⇒ 𝑐(⟨𝑢, 𝑣⟩) ≤ 𝑐(⟨𝑢, 𝑤, 𝑣⟩) (this problem was also called TRIANGLE_TSP in old Italian years) 

- Is 𝑀𝑒𝑡𝑟𝑖𝑐 𝑇𝑆𝑃 in 𝑃? (often special cases are in 𝑃 – for the curious ones of you, here) 

Theorem: 𝑀𝑒𝑡𝑟𝑖𝑐 𝑇𝑆𝑃 is NP-Hard 

Proof: 𝑇𝑆𝑃 ≤𝑝 𝑀𝑒𝑡𝑟𝑖𝑐 𝑇𝑆𝑃 - the idea is to multiply the weight of every edge by the value of the heaviest 
edge of the graph.  

The idea is the following (where inequality is not strictly satisfied): 

 
 

 
Given an instance of the TSP problem ⟨𝐺 = (𝑉, 𝐸), 𝑤, 𝑘⟩, we build an 

instance of Metric TSP ⟨𝐺′ = (𝑉, 𝐸), 𝑤′, 𝑘′⟩ such that the triangle 
inequality is satisfied in 𝐺′. In order to to this, we can define the 

weight function 𝑤 ′ as follows: 

𝑤′(𝑢, 𝑣) = 𝑤(𝑢, 𝑣) +𝑊 

giving 𝑊 = max
𝑢,𝑣∈𝑉

{𝑤(𝑢, 𝑣)} 

https://pure.tue.nl/ws/portalfiles/portal/2373438/Metis148543.pdf
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Think of a value 𝑘′ in such a way there if there exist an Hamiltonian circuit, there will be one in 𝐺′ in 
such a way the cost of the tour will work for every edge, so: 

𝑘′ = 𝑘 + 𝑛𝑊 

9.2.1 NP-Hardness of Metric TSP 

 
To be shown yet: 

1) 𝑤′ satisfies triangle inequality 
2) ∃ an Hamiltonian circuit of cost 𝑘 in 𝐺 ⇔ ∃ Hamiltonian circuit of cost 𝑘′ in 𝐺′  

Let’s see how to solve them formally: 

1) 𝑤′(𝑢, 𝑣) ≤? 𝑤′(𝑢, 𝑤) + 𝑤′(𝑤, 𝑣) (is it at most the weight of the others)? 
𝑤(𝑢, 𝑣) +𝑊 ≤? 𝑤(𝑢,𝑤) + 𝑤(𝑤, 𝑣) + 2𝑊 (does this hold adding a general weight)? 
𝑤(𝑢, 𝑣) ≤? 𝑤(𝑢,𝑤) + 𝑤(𝑤, 𝑣) +𝑊 (simply adding 𝑊 both members) 
𝑤(𝑢,𝑤) + 𝑤(𝑤, 𝑣) +𝑊 −𝑤(𝑢. 𝑣) ≥? 0 (is it true this is at most 0)? 
 
 
We only ask if the definition of triangle inequality is satisfied correctly.  
Note: it’s important the weights of edges are non-negative (otherwise, last part does not hold). 
 

2)  
a. (⇒) ∃ Ham. circuit of cost 𝑘 in 𝐺. Note that an optimal solution contains exactly 𝑛 

edges and the same circuit in 𝐺′ introduces a weight for every edge (so, +𝑊 ∀ edge). 
Thus, the cost of said tour in 𝐺′ is 𝑘 + 𝑛𝑊. 

b. (⇐) just remove the +𝑊 ∀ edge to obtain a Hamiltonian circuit of cost 𝑘 in 𝐺. 

So, what this means is (from CLRS): the traveling-salesperson problem is NP-complete even if you 
require the cost function to satisfy the triangle inequality. Thus, you should not expect to find a 
polynomial-time algorithm for solving this problem exactly. 

9.3 2-APPROXIMATION ALGORITHM FOR METRIC TSP 
 
For the Vertex Cover problem we used the concept of maximal matching to find a 2-approximation 
algorithm (basically 𝑉𝑒𝑟𝑡𝑒𝑥 𝐶𝑜𝑣𝑒𝑟 → 𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔). That means, we can find a tour that is no longer than 
twice the shortest tour. See this one here. 

What is the most similar problem to 𝑀𝑒𝑡𝑟𝑖𝑐 𝑇𝑆𝑃? MST (Minimum Spanning Tree). We simply travel 
“around” the MST , using each edge twice and the trip is shorter since the triangle inequality holds. We 
give the following intuition:  

- We give an MST 
- We want to build a cycle: what to do on a tree to achieve it? 
- Basically, there is a DFS traversing all the nodes 

https://www.youtube.com/watch?v=qGDdyX_zAEM
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- The cycle forms having all nodes touched exactly once 

 

 

 

 

The total MST weight gives a lower bound on the length of an optimal TSP tour. We shall then use the 
MST to create a tour whose cost is no more than twice of the MST’s weight, as long as the cost 
function satisfies the triangle inequality. Obviously, the optimal value for a tour is at least the value of 
the MST, since the tour itself spans the graph and is acyclic. 

We use MST computing said triangle inequality, but asking ourselves the question “tree – cycle”? 

- How to transform the tree in a cycle? 
- In order to do this, we can use the preorder visit of the MST 

procedure 𝑃𝑅𝐸𝑂𝑅𝐷𝐸𝑅(𝑇, 𝑣)  

 𝑝𝑟𝑖𝑛𝑡(𝑣) 

 if 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑣): do 

  for each v ∈ children(v): do 

   𝑃𝑅𝐸𝑂𝑅𝐷𝐸𝑅(𝑣) //𝑠𝑖𝑚𝑝𝑙𝑒 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑐𝑎𝑙𝑙 

 𝑟𝑒𝑡𝑢𝑟𝑛 

Let’s depict an example here: 

 

 

 

 

 
The process of preorder traversal can be represented as “root – left – right”. 

Idea: add to the preorder list the root (to close the cycle) → Hamiltonian cycle of the original graph 

Note the result is not a cycle since 𝑒 and 𝑎 are not connected. We can simply solve this problem by 
adding the edge (𝑒, 𝑎) to the 𝑃𝑅𝐸𝑂𝑅𝐷𝐸𝑅 list and make it an Hamiltonian circuit. 

We are free to add every edge we want because the graph is 
complete by definition. The resulting cycle can be seen from the 

direction of the blue arrow above. 
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To do so, we define the following algorithm: 

procedure 𝐴𝑝𝑝𝑟𝑜𝑥_𝑀𝑒𝑡𝑟𝑖𝑐_𝑇𝑆𝑃(𝐺):  

 𝑉 = {𝑣1, 𝑣2, … 𝑣𝑛} 

 𝑟 = 𝑣1 //𝑟𝑜𝑜𝑡 𝑓𝑟𝑜𝑚 𝑤ℎ𝑖𝑐ℎ 𝑃𝑟𝑖𝑚 𝑖𝑠 𝑟𝑢𝑛 

 𝑇∗ = 𝑃𝑟𝑖𝑚(𝐺, 𝑟) // 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑎𝑛 𝑀𝑆𝑇 𝑇 𝑓𝑟𝑜𝑚 𝐺 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑟𝑜𝑜𝑡 𝑟 

 ⟨𝑣𝑖1 , 𝑣𝑖2 , … 𝑣𝑖𝑛⟩  = 𝐻
′ = 𝑃𝑅𝐸𝑂𝑅𝐷𝐸𝑅(𝑇∗, 𝑟)  

// 𝑙𝑖𝑠𝑡𝑠 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑒𝑒 𝑖𝑛 𝑎𝑛 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑓𝑎𝑠ℎ𝑖𝑜𝑛 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑎 𝑝𝑟𝑒𝑜𝑟𝑑𝑒𝑟 𝑤𝑎𝑙𝑘 

 return ⟨𝐻′, 𝑣𝑖1⟩ ≥ 𝐻 // 𝑏𝑎𝑠𝑖𝑐𝑎𝑙𝑙𝑦, 𝑐𝑙𝑜𝑠𝑒 𝑡ℎ𝑒 𝑐𝑦𝑐𝑙𝑒 𝑎𝑛𝑑 𝑟𝑒𝑡𝑢𝑟𝑛 𝑖𝑡 

This algorithm uses Prim as a subroutine to compute the MST. As such, this is super-fast and can be 
characterized as a near-linear algorithm.  

So, to fully summarize: 

1. Given a complete weighted graph 𝐺, pick any vertex 𝑣 as the root and find a MST 𝑇, using 
Prim’s algorithm 

2. Compile a list 𝐿 of vertices encountered in a preorder traversal of 𝑇 

3. Return 𝐿 as a tour 

Since 𝐿 contains each vertex exactly once, it constitutes a tour where there’s an edge between each 
pair of consecutive vertices, and between the first and the last vertex. 

To clearly see the algorithm, consider this one here. 

Consider the following from the book – also present in other notes existing, so given it’s useful I put 
this here too: 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.educative.io/blog/approximation-algorithms-and-metric-tsp
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9.3.1 Analysis of the cost of 𝑯 

 
Let 𝐻∗ denote an optimal tour for the given set of vertices. 

Let’s give the intuition behind the algorithm: 

1) Cost of 𝑇∗ is “low” (actually, the lowest) 
2) Triangle inequality ⇒ “shortcuts” do not increase the cost  

For example, in the graph below, to go from 𝑐 to 𝑑 in the MST tree, we don’t go from 𝑏.  

 

 

 

 

 
Shortcutting allows to construct a tour which does not revisit vertices. Specifically, it can be formally 
defined as follows (considering 𝜋 is the parent if you remember): 

 

 

 

To be more precise, shortcuts in graph theory refer to edges that directly connect two vertices that are 
not adjacent in the original graph. What we are trying to do here is: 

𝑤|𝐻∗|

𝑤|𝐻′|
≤ 2    𝑜𝑟 𝑚𝑜𝑟𝑒 𝑖𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙  𝜌 =

|𝐻′|

|𝐻∗|
 (𝑛𝑜𝑡 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑖𝑛𝑔 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠) 

or in inequality terms: 

𝑤|𝐻′| ≤ 𝑐ℎ𝑜𝑖𝑐𝑒 ≤ 2𝑤|𝐻∗| 

1) Lower bound to the cost of 𝐻∗ (= optimal tour) (for vertex cover: |𝑉∗| ≥ |𝐴|) 

 

 

 

 

Given the optimal tour, we obtain a spanning tree by deleting any edge from a tour, and each edge 
cost is non-negative (so, its cost is not lower than the best spanning tree found). Also, the triangle 
inequality tells us that the cost of taking this edge is at least as short as the original in-order path.  

Therefore, the weight of the MST 𝑇∗ provides a lower bound to the cost of an optimal tour, so we 
have 𝑤(𝑇) ≤ 𝑤(𝐻∗). 

  



103  Advanced Algorithms Simple (for real) 
 

Written by Gabriel R. 

2) Upper bound to the cost of 𝐻 (the returned solution). We want to prove the following: 

𝑤(𝐻) ≤ 𝜌𝑤(𝑇∗) ≤ 𝜌𝑤(𝐻∗) 

 

𝑤(𝐻∗) ≥ 𝑤(𝑇∗) 

The approximation factor keeps being at most twice, so 𝜌 = 2 (where 𝑤(𝑇∗) has to be at least twice as 
big since by last line would not hold otherwise): 

𝑤(𝐻) ≤ 2𝑤(𝑇∗) ? 

Definition: given a tree, a full preorder chain is a list with repetitions of the vertices of the tree which 
identifies the vertices reached from the recursive calls of 𝑃𝑅𝐸𝑂𝑅𝐷𝐸𝑅(𝑇, 𝑣). 

The following is an example, quite easy to see I hope (f.p.c. = “full preorder chain” from now on): 

 

As a sidenote, consider the full walk, which would list the vertices when they are first visited and also 
whenever they are returned to after a visit to a subtree. The full preorder walk allows to select each 
edge of the MST exactly twice, one going down, the other going up, as you can see from right figure.  

The key property is the following: given the full preorder chain traverses every edge exactly two times, 
we have: 

𝑤(𝑓. 𝑝. 𝑐. ) = 2𝑤(𝑇∗) 

This happens because every edge of 𝑇∗ appears twice in a f.p.c.  

Unfortunately, the f.p.c. is generally not a tour since it visits some vertices more than once.  

- By the triangle inequality, however, we can delete a visit to any vertex from f.p.c. and the cost 
does not increase 

a. This ensures we only have traversed vertices twice so to ensure a full visit in all the 
tree, correctly applying the Hamiltonian cycle definition 

- By repeatedly applying this operation, we can remove from f.p.c. all but the first visit to each 
vertex (except for the second [and last] occurrence of the root) 

- This is like adding a shortcut between vertices that does not increase the cost 

comes from 
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Consider the cycle being returned is a subsequence of the full preorder walk, selected the first time 
they are seen. Thanks to the shortcutting property, we remove the duplicates: 

 

 

 

 

 

 
⇒ 2𝑤(𝑇∗) ≥ 𝑤(𝐻)  

Putting all pieces together: 

1) 𝑤(𝐻∗) ≥ 𝑤(𝑇∗) 
 

2) 2𝑤(𝑇∗) ≥ 𝑤(𝐻) 

2𝑤(𝐻∗) ≥ 2𝑤(𝑇∗) ≥ 𝑤(𝐻) 

⇒
𝑤(𝐻)

𝑤(𝐻∗)
≤ 2 

(This structure holds, compared to the general one, since the inequalities are inverted in sign and 
logic. This is given by the particular structure of the problem, otherwise the structure above works) 

This ordering is the same as that obtained by a preorder walk of the tree T . Let H be the cycle 
corresponding to this preorder walk. It is a Hamiltonian cycle, since every vertex is visited exactly 
once, and in fact it is the cycle computed by 𝐴𝑝𝑝𝑟𝑜𝑥_𝑀𝑒𝑡𝑟𝑖𝑐_𝑇𝑆𝑃. This algorithm is not the best 
practical choice for this problem. There are other approximation algorithms that typically perform 
much better in practice. 

So, basically:  

- A valid tour must span all the vertices 
- When we perform a preorder traversal of the MST, each edge of the MST is used twice (once 

when we go down the tree and once when we come back up) 
a. This results in a path that has a total weight of at most twice the weight of the MST, 

since every edge is counted twice 
- Due to the triangle inequality, taking a direct path between any two nodes in the preorder 

traversal is no more expensive than the path through intermediate nodes in the MST 
a. This means that we can "shortcut" the traversal path without increasing the total 

weight, keeping it within twice the weight of the MST 
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9.3.2 Exercises 

 
Exercise 

Show that the above analysis is tight by giving an example of a graph where 𝐴𝑝𝑝𝑟𝑜𝑥_𝑀𝑒𝑡𝑟𝑖𝑐_𝑇𝑆𝑃 
returns a solution of cost 2 ∗ 𝐻∗. 

Solution  

Consider a complete graph of 6 vertices. We take the edges of weight 
1 (blue) and the edges of weight 2. This satisfies the triangle 

inequality. 

Here, 𝑂𝑃𝑇 will use only edges of weight 1, as you can see from left 
graph, having as cost of the optimal tour 𝑛 (all vertices with no cycle). 

𝐴𝑝𝑝𝑟𝑜𝑥_𝑀𝑒𝑡𝑟𝑖𝑐_𝑇𝑆𝑃 finds the minimum MST and doubles its edges to 
create a Hamiltonian cycle, resulting in a tour that visits each vertex 

twice, except for the central vertex.    

It multiplies the weight 2 over all vertices not considering the central 
one, so 2 ∗ (𝑛 − 1) = 2𝑛 − 2. 

It’s not hard to see that: 

- The optimal solution uses only 𝑛 edges of cost 1 → 𝑛 
a. (e.g. a complete graph with 6 edges with cost 1) 

- The algorithm uses only edges of cost 2, apart from two edges of cost 1 → 2𝑛 − 2 

Over infinity, we have 2𝑛−2
𝑛
= 𝑙𝑖𝑚𝑛→∞

2(𝑛−1)

𝑛
= 2  
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So, the formula is 𝐺𝑟𝑒𝑒𝑑𝑦
𝑂𝑃𝑇

≤ 𝑓𝑎𝑐𝑡𝑜𝑟.  

 

 

 

 

 

 

 

 

 

 

 

 

Programming exercise 

Implement 𝐴𝑝𝑝𝑟𝑜𝑥_𝑀𝑒𝑡𝑟𝑖𝑐_𝑇𝑆𝑃 in whatever language you want and run it on TSPLIB– google the 
library (can be found here easily). 

Solution 

import math 

from collections import defaultdict 

def prim(graph, start): 

    """ 

    Implements Prim's algorithm to find the minimum spanning tree (MST) 

of a graph. 

Args: 

        graph (dict): A dictionary representing the graph, where keys are 

vertices 

        and values are dictionaries of adjacent vertices and their 

weights. 

        start (hashable): The starting vertex for Prim's algorithm. 

    Returns: 

        dict: A dictionary representing the MST, where keys are vertices 

and 

        values are tuples of the parent vertex and weight. 

https://github.com/mastqe/tsplib
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    """ 

    mst = {} 

    visited = set() 

    heap = [(0, start, None)] 

    while heap: 

        weight, u, parent = heappop(heap) 

        if u in visited: 

            continue 

        visited.add(u) 

        if parent is not None: 

            mst[u] = (parent, weight) 

        for neighbor, neighbor_weight in graph[u].items(): 

            if neighbor not in visited: 

                heappush(heap, (neighbor_weight, neighbor, u)) 

    return mst 

def preorder(tree, root): 

    """ 

    Performs a preorder traversal of the given tree and returns the 

ordered list of vertices. 

    Args: 

        tree (dict): A dictionary representing the tree, where keys are 

vertices and 

        values are tuples of the parent vertex and weight. 

        root (hashable): The root vertex of the tree. 

    Returns: 

        list: A list of vertices in the order they were visited during 

the preorder traversal. 

    """ 

    visited = set() 

    order = [] 

    def traverse(node): 

        if node not in visited: 

            visited.add(node) 
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            order.append(node) 

            parent, _ = tree[node] 

            if parent is not None: 

                traverse(parent) 

    traverse(root) 

    return order 

def approx_metric_tsp(graph): 

    """ 

    Implements the Approx_Metric_TSP algorithm to find an approximate 

solution for the 

    Traveling Salesman Problem (TSP) on a metric graph. 

    Args: 

        graph (dict): A dictionary representing the graph, where keys are 

vertices 

        and values are dictionaries of adjacent vertices and their 

weights. 

    Returns: 

        list: A list of vertices representing the approximate TSP tour. 

    """ 

    # Choose an arbitrary root vertex 

    root = next(iter(graph)) 

    # Construct the minimum spanning tree (MST) using Prim's algorithm 

    mst = prim(graph, root) 

    # Perform a preorder traversal of the MST to get the ordered list of 

vertices 

    ordered_vertices = preorder(mst, root) 

    # Close the cycle by adding an edge from the last vertex to the root 

    ordered_vertices.append(ordered_vertices[0]) 

    return ordered_vertices 

This implementation includes the prim function to find the minimum spanning tree (MST) using Prim's 
algorithm, the preorder function to perform a preorder traversal of the MST, and the 
approx_metric_tsp function that combines these two functions to implement the 
Approx_Metric_TSP algorithm. 
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To run this implementation on the TSPLIB graphs, you'll need to download the TSPLIB dataset and 
parse the graph data into a format that can be used by the approx_metric_tsp function. Here's an 
example of how you can parse and run the algorithm on the gr24.tsp graph from the TSPLIB (said 
library offers many graphs, check above): 

def parse_tsplib(file_path): 

    """ 

    Parses a TSPLIB graph file and returns a dictionary representing the 

graph. 

    Args: 

        file_path (str): The path to the TSPLIB graph file. 

    Returns: 

        dict: A dictionary representing the graph, where keys are 

vertices 

        and values are dictionaries of adjacent vertices and their 

weights. 

    """ 

    graph = defaultdict(dict) 

    with open(file_path, 'r') as file: 

        lines = file.readlines() 

        dimension = int(lines[3].split(':')[1]) 

        edges = lines[7 + dimension:] 

        for edge in edges: 

            u, v, weight = edge.split() 

            u, v = int(u), int(v) 

            graph[u][v] = int(weight) 

            graph[v][u] = int(weight) 

    return graph 

# Parse the gr24.tsp graph 

graph = parse_tsplib('gr24.tsp') 

# Run the Approx_Metric_TSP algorithm 

tour = approx_metric_tsp(graph) 

print("Approximate TSP tour:", tour) 
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This code defines a parse_tsplib function to parse the TSPLIB graph file and convert it into a 
dictionary representation that can be used by the approx_metric_tsp function. It then parses the 
graph and runs the approx_metric_tsp algorithm on it, printing the approximate TSP tour. 

Note that the TSPLIB dataset contains various instances of the TSP problem, and some of them may 
be too large to be efficiently solved by this implementation, which has a time complexity of O(n^2 log 
n) due to Prim's algorithm. For larger instances, you may need to use more efficient algorithms or 
optimizations. 

9.4 3/2 (OR 1.5) APPROXIMATION ALGORITHM FOR METRIC TSP – CHRISTOFIDES 
 

(Further readings: paper, article and article) 

Christofides algorithm was born in 1976 and this will not be found in the CRLS, but inside the further 
readings free book here (page 46 to avoid wasting your/my time). 

Reason for 2-approximation factor was the fact the preorder traversal of 𝑇∗ used every edge of 𝑇∗ 
exactly twice. We’ll try to improve on this by constructing a tour that traverses MST edges only once. 

The basic 2-approximation algorithm for Metric TSP involves using a Minimum Spanning Tree (MST) 
and a preorder traversal to create a tour. This approach, however, results in visiting each edge twice, 
leading to a tour that can be up to twice the weight of the optimal TSP tour.  

Christofides' algorithm improves on this by ensuring that each edge is visited only once. To do so, we 
have to use an Eulerian graph. Here, a MST is created to make every node even, then shortcutting.  

We give a couple of definitions useful for this context: 

- A path (or cycle) is Eulerian if it crosses every edge of the graph exactly once 
- A (connected) graph is Eulerian if there exists an Eulerian cycle 

If the MST was Eulerian (cannot be) then we would have a 1-approx algorithm (which would be 
optimal, given one would cross every edge exactly once). 𝐴𝑝𝑝𝑟𝑜𝑥_𝑀𝑒𝑡𝑟𝑖𝑐_𝑇𝑆𝑃 is finding a “cheap” 
Eulerian cycle in the MST, but effectively needs to double its edges.  

Question: is there a cheaper Eulerian cycle? 

We quote the famous theorem by Euler, which was spawned by the Seven Bridges of Konigsberg 
mathematical problem, which, if you are curious, you can find here. 

Theorem: A connected (multi)graph is Eulerian ⇔ every vertex has even degree. The intuition is the 
following: enter a vertex, then exiting from it using a new edge, doing that without using edges more 
than once. 

 

 

 
We want to focus on the odd degree vertices, given I have to cross again vertices (the even ones are 
fine, given we don’t pass on them again). Even better: if I want to traverse every edge exactly once, I 
must have a way out from every vertex.  

https://arxiv.org/abs/2212.06296
https://www.quantamagazine.org/computer-scientists-break-traveling-salesperson-record-20201008/
https://theconversation.com/planning-the-best-route-with-multiple-destinations-is-hard-even-for-supercomputers-a-new-approach-breaks-a-barrier-thats-stood-for-nearly-half-a-century-148308
https://www.designofapproxalgs.com/book.pdf
/en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg
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So, let’s handle the odd-degree vertices of the MST explicitly.  

Property: in any (finite) graph, the number of vertices of odd degree is even. 

Proof: We use the following equality (handshaking lemma – the sum of the degrees [the numbers of 
times each vertex is touched] equals twice the number of edges in the graph) 

∑deg(𝑣) = 2𝑚

𝑣∈𝑉

 

Basically, the sum of odd vertices with even ones, will get us an even result, that’s the main intuition. 
So, we can split such summation into two parts: 

∑ deg(𝑢) + ∑ deg(𝑤) = 2𝑚

𝑤∈𝑜𝑑𝑑𝑢∈𝑒𝑣𝑒𝑛

 

 

Since the result must be even, the sum of degrees must be even too.  

- This happens only if the number of odd degree vertices is even, and this happens since every 
edge covers 2 vertices 

Idea: augment the initial MST 𝑇∗ with (the cheapest basically) a minimum-weight perfect matching 
(perfect means that it includes all the vertices) between the vertices that have odd degree in the MST.  

For instance, let’s consider the following MST, coloring in blue the odd-degree vertices. Imagine we 
add a perfect matching colored in red, augmenting the previous MST 𝑇∗ with a minimum-weight 
perfect matching in green, becoming as you can see from following figure.  

 

 

 

 
 
⇒ the resulting graph has only even-degree vertices, i.e. is an Eulerian graph.  

Let’s write the algorithm, which does exactly four things: 

𝐶ℎ𝑟𝑖𝑠𝑡𝑜𝑓𝑖𝑑𝑒𝑠(𝐺)  

1) 𝑇∗ ← 𝑃𝑟𝑖𝑚(𝐺, 𝑟)  // 𝑇∗ = (𝑉, 𝐸∗) 

2) Let 𝐷 be the set of vertices of 𝑇∗ with odd-degree (note |𝐷| is even). Compute a min-weight perfect 
matching 𝑀∗ on the graph induced by 𝐷 // this can be done in polynomial time (Edmonds, 1965) 

3) The graph (𝑉, 𝐸∗ ∪𝑀∗) is Eulerian // any edge in both 𝐸∗ and 𝑀∗ appears twice in this (multi)graph. 
Compute an Eulerian cycle 𝐸 on this graph, called 𝐺∗ so to have 𝐺∗ = (𝑉, 𝐸∗) ∪ 𝑀∗. 

4) Return the cycle that visits all the vertices of 𝐺 in the order of their first appearance in the Eulerian 
cycle 𝐸 (basically, skipping all repeated vertices – shortcutting) 
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So, to summarize: 

- The idea of 𝐴𝑝𝑝𝑟𝑜𝑥_𝑀𝑒𝑡𝑟𝑖𝑐_𝑇𝑆𝑃 is to approximate an optimal Metric TSP tour by using the 
Preorder traversal of the MST 𝑇∗ 

- As we have seen, this kind of traversal is like passing through every edge twice, but thanks to 
triangle inequality we are able to add shortcuts that do not increase the cost 

- Christofides’ algorithm, instead, exploits the concept of Eulerian cycle 
- It creates an Eulerian graph starting from the MST 𝑇∗, and then it approximates an optimal 

Metric TSP tour by finding an Eulerian cycle in this new graph 
- Finally, it adds shortcuts in order to make the Eulerian cycle (that can pass through the same 

vertex more the once) an Hamiltonian circuit 

An interesting video on TSP and Christofides too here.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Consider the following example, connecting all vertices, in which edge weights obey the triangle 
inequality: 

 

 

 

 

 

https://www.youtube.com/watch?v=GiDsjIBOVoA
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This set of figures appears in Wikipedia, in which there is the full explanation step by step. To keep 
coherence with our notes, this space is intentionally left blank to continue within the next page. 

Now build the MST 𝑇∗, take the odd-degree vertices marked as blue in 𝐷 and compute the minimum-
weight perfect matching 𝑀∗ (from the subgraph using only the odd-degree vertices).  

 

 

 

 

 

  

 

 

 

 

Merging together the unite matching and the MST, we get the Eulerian multigraph 𝐺∗ as follows: 

 

 

 

 

 

 

With this graph, Eulerian cycles can be computed, starting from a source vertex; consider, if we mark 
all the vertices for instance, the following result as 𝐺∗: 

  

 

 

 

An Eulerian cycle computed on this graph can be: 𝑐, 𝑑, 𝑒, 𝑐, 𝑏, 𝑎, 𝑐. We can find shortcuts (basically, 
removing double occurrences of vertices apart from 𝑐, which is the source one – will be removed one 
since there are three) as we did for 𝐴𝑝𝑝𝑟𝑜𝑥_𝑀𝑒𝑡𝑟𝑖𝑐_𝑇𝑆𝑃 and the final Hamiltonian Tour 𝐻 becomes: 
𝑐, 𝑑, 𝑒, 𝑏, 𝑎, 𝑐. 

  

https://en.wikipedia.org/wiki/Christofides_algorithm
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9.4.1 Analysis 

 
- 𝑤(𝐻) ≤ 𝑤(𝑇∗) + 𝑤(𝑀∗) - weight of the Hamiltonian cycle formed by shortcutting the Eulerian 

cycle is lower bound for optimal tour and the matching 
a. Holds by triangle inequality, given thanks to shortcutting, odd degrees in 𝑇∗ were in 

even number, so 𝐻∗ has an even number of vertices 
 

- 𝑤(𝑇∗) ≤ 𝑤(𝐻∗) - weight of MST lower bound for optimal TSP tour 
a. Proven here already (last class w.r.t. this one) 

The goal to reach is 𝑤(𝐻) ≤ 3

2
𝑤(𝐻∗). To do this, we would need to prove (can also be found here): 

- 𝑤(𝑀∗) ≤?
1

2
𝑤(𝐻∗) (by triangle inequality) 

We will do the following clever step: 

𝑤(optimal tour of the odd-degree vertices of 𝑇∗) ≤ 𝑤(𝐻∗) 

 

 

 

 

 

 

 

 

One of these 2 has cost ≤ 𝑤(𝐻∗)

2
 → optimal, since the perfect matching combines even degree vertices 

https://courses.engr.illinois.edu/cs598csc/sp2011/Lectures/lecture_2.pdf
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Putting all pieces together we get: 

𝑤(𝐻) ≤ 𝑤(𝐸∗ ∪𝑀∗) ≤ 𝑤(𝐻∗) +
𝑤(𝐻∗)

2
=
3

2
𝑤(𝐻∗) 

To conclude: 

- Recent advancements: (3
2
− 𝜖)-approx algorithm, with factor 𝑒 ∼ 10−36 

a. See further reading on this one (also linked above or in 23/24 Moodle) 

- Approx. ratio ≥ 123

122
 

- Conjecture: 4
3

 

Not told in class, but to be complete, given the nature of this course: its worst case complexity is 
𝑂(𝑛3), given 𝑛 the number of nodes or vertices of graph.  

To conclude, two complete examples of Christofides runs: 
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Another useful video on the topic (see minute 12): 

 

 

 

 

 

 

 

On the approximation ratio, Wikipedia specifies the following (with some edits of mine I tried to put to 
better explain the steps of the problem): 

- The cost of the solution produced by the algorithm is within 3/2 of the optimum. To prove this, 
let C be the optimal traveling salesman tour. Removing an edge from C produces a spanning 
tree, which must have weight at least that of the minimum spanning tree, implying that w(T) 
≤ w(C) - lower bound to the cost of the optimal solution. 

- The algorithm addresses the problem that T is not a tour by identifying all the odd degree 
vertices in T; since the sum of degrees in any graph is even (by the Handshaking lemma), there 
is an even number of such vertices. The algorithm finds a minimum-weight perfect 
matching M among the odd-degree ones. 

- Next, number the vertices of O in cyclic order around C, and partition C into two sets of paths: 
the ones in which the first path vertex in cyclic order has an odd number and the ones in which 
the first path vertex has an even number. 

a. Each set of paths corresponds to a perfect matching of O that matches the two 
endpoints of each path, and the weight of this matching is at most equal to the weight 
of the paths 

b. Infact, each path endpoint will be connected to another endpoint, which also has an 
odd number of visits due to the nature of the tour 

- Since these two sets of paths partition the edges of C, one of the two sets has at most half of 
the weight of C, and thanks to the triangle inequality its corresponding matching has weight 
that is also at most half the weight of C.  

a. The minimum-weight perfect matching can have no larger weight, so w(M) ≤ w(C)/2. 
Adding the weights of T and M gives the weight of the Euler tour, at most 3w(C)/2 

b. Thanks to the triangle inequality, even though the Euler tour might revisit vertices, 
shortcutting does not increase the weight, so the weight of the output is also at 
most 3w(C)/2 

https://www.youtube.com/watch?v=s9haN-zaqrM
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10 SET COVER 

Set cover is an optimization problem that models many problems requiring resources to be allocated 
(basically, it’s a generalization of Vertex Cover – or viceversa). It aims to find the least number of 
subsets that cover some universal set. A cover is a subcollection of sets which union covers 𝑋. 

 

 

 

 

 

 

Its inputs are: 

- 𝐼 = (𝑋, 𝐹) = instance of the set covering problem 
- 𝑋 = set of elements of any kind, called “universe” 
- 𝐹 ⊆ {𝑆: 𝑆 ⊆ 𝑋} = 𝐵(𝑋) 

a. 𝐵 stands for “Boolean” and 𝐹 is the set of all subsets of 𝑋 

There is a constraint that needs to be always respected: ∀𝑥 ∈ 𝑋, ∃ 𝑆 ∈ 𝐹: 𝑥 ∈ 𝑆 i.e., “𝐹 covers 𝑋” 

Optimization problem: (smallest subset of 𝐹 having its members covering all 𝑋) → find 𝐹′ ⊆ 𝐹 s.t. 

1) 𝐹′ covers 𝑋 
2) min |𝐹′| 

Example (also normal algorithm here on the right):  

𝑋 = {1,2,3,4,5}  

𝐹 = {{1,2,3}, {2,4}, {3,4}, {4,5}}  

⇒ 𝐹∗ = {{1,2,3}, {4,5}} (cover all elements using only two sets) 

Applications: 

- Hiring (𝑋 = skills, 𝐹 = people with some skills) 
a. As a simple example, suppose that 𝑋 represents a set of skills that are needed to solve 

a problem and that we have a given set of people available to work on the problem 
b. We wish to form a committee, containing as few people as possible, such that for 

every requisite skill in 𝑋, at least one member of the committee has that skill 
- Spamming (𝑋 = people, 𝐹 = mailing lists) 

Assertion: Set Cover (in its decision version ⟨(𝑋, 𝐹), 𝑘⟩) is NP-hard. 

Proof: 𝑉𝑒𝑟𝑡𝑒𝑥 𝐶𝑜𝑣𝑒𝑟 ≤𝑝 𝑆𝑒𝑡 𝐶𝑜𝑣𝑒𝑟  

- Given an instance of Vertex Cover Problem ⟨𝐺 = (𝑉, 𝐸), 𝑘⟩ 
- We create an instance of Set Cover problem ⟨(𝑋, 𝐹), 𝑘⟩ 
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Basically ⟨𝐺 = (𝑉, 𝐸), 𝑘⟩ →𝑓 ⟨(𝑋, 𝐹), 𝑘⟩  

where: 

- 𝑋 = 𝐸 
- 𝐹 = {𝑆1, 𝑆2, … 𝑆𝑛} one ∀ vertex ∈ 𝑉, 1,2,…𝑛 
- 𝑆𝑖 = {𝑒 = (𝑢, 𝑣) such that 𝑢 = 𝑖 or 𝑣 = 𝑖}, which is the set of covered vertices by edge 𝑒 

Basically, there are |𝑉| = 𝑛 subsets 𝑆𝑖, and each subset is the set of edges incident to vertex 𝑖. 

Now show that finding a Set Cover of size 𝑘 ⇔ finding a Vertex Cover of size 𝑘. 

A bit more about the proof, just to make you understand completely the reduction working: 

- (⇒) Suppose {𝑆1, 𝑆2, . . . , 𝑆𝑘} is a set cover for 𝑋. Then, every edge in 𝐸 must be incident to at 
least one vertex 𝑢1, . . , 𝑢𝑘. This happens because every element is one node of the adjacency 
list and so we find the minimal number of nodes touching all edges of graph, guaranteeing it 
will be minimal (for all sizes, given, even if less than 𝑘). Therefore, it forms a vertex cover of size 
𝑘 in 𝐺.  

- (⇐) Suppose 𝑢1, . . , 𝑢𝑘 is a vertex cover in 𝐺. Then, 𝑆𝑖 covers all the edges incident to vertex 𝑢𝑖. 
Therefore, {𝑆1, . . , 𝑆𝑘} is a set cover of size 𝑘 for 𝑋. 

The transformation is linear in the size of the instance and preserves the approximation.  

10.1 GREEDY APPROXIMATION ALGORITHM 
 
Think greedy, the professor says, make the simplest choice. The greedy method works by picking at 
each stage the set 𝑆 that covers the greatest number of remaining elements that are uncovered: 

- Choose the subset that contains the largest number of uncovered elements 
- Remove from 𝑋 those covered elements 
- Repeat until 𝑋 = ∅ 

𝐴𝑝𝑝𝑟𝑜𝑥_𝑆𝑒𝑡_𝐶𝑜𝑣𝑒𝑟(𝑋, 𝐹)  

 𝑈 = 𝑋 

 𝐹′ = ∅ // 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑓𝑎𝑚𝑖𝑙𝑦 𝑏𝑒𝑖𝑛𝑔 𝑏𝑢𝑖𝑙𝑡) 

 while 𝑈 ≠ ∅: do 

// 𝑡𝑎𝑘𝑒 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝐹 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑎𝑠 𝑚𝑎𝑛𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑎𝑠 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒  

  𝑙𝑒𝑡 𝑆 ∈ 𝐹 = |𝑆 ∩ 𝑈| = max
𝑆′∈𝐹

{|𝑆′ ∩ 𝑈|} 

  𝑈 ← 𝑈 ∖ 𝑆 // 𝑢𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, 𝑟𝑒𝑚𝑜𝑣𝑖𝑛𝑔 𝑡ℎ𝑜𝑠𝑒 𝑓𝑟𝑜𝑚 𝑆 

  𝐹 ← 𝐹 ∖ {𝑆} // 𝑟𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 𝑠𝑒𝑡𝑠 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑖𝑛𝑠𝑖𝑑𝑒 𝑜𝑓 𝐹 

  𝐹′ ← 𝐹′ ∪ {𝑆} 

 return 𝐹′ 
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Correctness (aka “it does the job” – it covers all the elements): At every iteration |𝑈| decreases by at 
least one. In general, to prove the correctness of an approximation algorithm, it is sufficient to prove 
that the returned solution is always within the set of admissible solutions. 

- Every element taken is always inside of the family of subsets containing such element 
- Even when 𝑈 = ∅, at every loop 𝑈 decreases, so it can’t even go out prematurely from while 

loop, given max
𝑆′∈𝐹

{|𝑆′ ∩ 𝑈|} ≥ 1 → every element is covered 

Complexity:  

- N. of iterations ≤ |𝑋| (every 𝑆𝑖 ∈ 𝐹 contains at least an element) 
- N. of iterations ≤ |𝐹| (every 𝑆𝑖 ∈ 𝐹 contains at least two elements) 
- ⇒ n. of iterations ≤ min {|𝑋|, |𝐹|} 
- ∀ iterations the complexity is ≤ |𝑋| ∗ |𝐹| (scanning all elements and decreasing elements in 

both sets) 
- ⇒  𝑂(|𝑋| ∗ |𝐹| ∗ 𝑚𝑖𝑛{|𝑋|, |𝐹|}) 

a. It can be at most cubic in the input size (with the “right” data structure can be 
implemented efficiently in 𝑂(|𝑋| + |𝐹|), i.e. in linear time) 

 

 

 

 

 

10.2 ANALYSIS – A 𝒍𝒐𝒈𝟐(𝒏) APPROXIMATION ALGORITHM 
 

We’ll show that |𝐹
′|

|𝐹∗|
≤ ⌈log2(𝑛)⌉ + 1, where 𝑛 = |𝑋| (we are showing |𝐹′| ≤ 𝑓(|𝐹∗|)).  

Property: if (𝑋, 𝐹) admits a cover with |𝐹| ≤ 𝑘, then ∀𝑋′ ⊆ 𝑋 (𝑋′, 𝐹) admits a cover with |𝐹| ≤ 𝑘. 

(This means that if I can cover 𝑋 with 𝑘 subsets, then I can definitely cover a subset of 𝑋 with 𝑘 
subsets) 

Idea: try to bound the number of iterations such that the set of remaining elements gets empty. 

- 𝑈0 = 𝑋 
- 𝑈𝑖 = residual universe after then of the 𝑖𝑡ℎ iteration 
- |𝐹∗| = 𝑘  (cardinality of optimal solution) 

This is done limiting the number of loops to execute in such a way the set of elements gets empty as 
soon as possible. 

Lemma: after the first 𝑘 iterations, the residual universe is at least halved, that |𝑈𝑘| ≤
𝑛

2
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Being greedy, this can be seen as a recursive algorithm selecting a subset then repeating itself on the 
residual universe as follows: 

⇒ after 𝑘 ∗ 𝑖 iterations |𝑈𝑘−𝑖| ≤
𝑛

2𝑖
 (after 𝑘 iterations, the size of residual universe is the ones of 

remaining sets) 

⇒ # (number) of necessary iterations ⌈log2(𝑛)⌉ ∗ (𝑘) + 1 at each iteration |𝐹′| + + 

⇒ |𝐹′| ≤ ⌈log2(𝑛)⌉ ∗ 𝑘 + 1 

⇒ |𝐹′| ≤ ⌈log2(𝑛)⌉ ∗ |𝐹∗| + 1 (because at every iteration, |𝐹′| is increased by one) 

Consider the “+1” here is present to cover the possible last element remaining to cover. 

Let’s prove the lemma in a proper way: 

𝑈𝑘 ⊆ 𝑋 ⇒ 𝑈𝑘 admits a cover size ≤ 𝑘 all in 𝐹 (i.e. not yet selected by the algorithm) 

(Trivial) Property: if (𝑋, 𝐹) admits a cover with |𝐹| ≤ 𝑘 then ∀𝑋′ ⊆ 𝑋, (𝑋′, 𝐹) admits a cover with |𝐹| ≤ 𝑘 
(this happens because of the property above, given after 𝑘 iterations, the residual universe has at 
most as many elements as the sets not yet selected) 

Let 𝑇1, 𝑇2, … , 𝑇𝑘 ∈ 𝐹 be those sets, where ⋃𝑇𝑖 covers 𝑈𝑘  (covering all sets – residual universe after 𝑘 
iterations).  

We apply the pigeonhole principle, which generally states that if 𝑛 items are put into 𝑚 containers, 
with 𝑛 > 𝑚, then at least one container must contain more than one item. 

- In other words and more precisely for the example and context here: given a set of elements 
where there is an order relation, there is always at least one element whose value is greater 
than the mean value 

There are 𝑘 subsets and there’s the need to cover elements of cardinality 𝑈𝑘. It is possible and there is 

at least one which covers at least a fraction of all elements: ∃𝑇 s.t. |𝑈𝑘 ∩ 𝑇| ≥
|𝑈𝑘|

𝑘
 (pigeon hole) 

We’ll now see that in the first 𝑘 iterations, ∀ iteration at least |𝑈𝑘|
𝑘

 new elements get covered:  

∀1 ≤ 𝑖 ≤ 𝑘, let 𝑆𝑖 ∈ 𝐹 be the selected subset of the algorithm. This subset has the following property: 

|𝑆𝑖 ∩ 𝑈𝑖| ≥ |𝑇𝑗 ∩ 𝑈𝑖| ∀1 ≤ 𝑗 ≤ 𝑘 

This is true because at each interaction 𝐼, the cardinality of the intersection with the residual universe 
is at least as big as the cardinality of the 𝑇𝑗 not selected (each interaction selects the set with biggest 

cardinality). This property is valid also for 𝑇 , that is:  

|𝑆𝑖 ∩ 𝑈𝑖| ≥ |𝑇 ∩ 𝑈𝑖| ≥ |𝑇 ∩ 𝑈𝑘| ≥
|𝑈𝑘|

𝑘
 

⇒ after the first 𝑘 iterations the algorithm has covered |𝑈𝑘|
𝑘
∗ 𝑘 = |𝑈𝑘| elements 

Since 𝑈𝑘  is the set of elements not selected by the algorithm after 𝑘 iterations, it follows that: 

|𝑈𝑘| ≤ 𝑛 − |𝑈𝑘| 
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satisfied for |𝑈𝑘| ≤
𝑛

2
 (after the 𝑘 iterations, the residual universe is at least halved). 

Taking screenshots from previous years to make the context even clearer: 

 

10.2.1 Exercises 

 
Is this analysis tight? 

Exercise: show that there is an input 𝐼 = (𝑋, 𝐹) on which 𝐴𝑝𝑝𝑟𝑜𝑥_𝑆𝑒𝑡_𝐶𝑜𝑣𝑒𝑟 achieves an 
approximation ratio of 𝜃(log(𝑛)) 

(Hint: the algorithm chooses the set that contains the largest n. of uncovered elements, whereas 𝑂𝑃𝑇 
chooses a set that contains the second largest n. of uncovered elements) 

Solution 

Consider the following schema, applying exactly what the hint told – we have 30 elements, in which 
the optimal choice would be to select both the complete sets of elements, while the algorithm selects 
progressively only a fraction of those: 

 

 

 

 

 

- 𝑋 has 𝑛 = 2𝑘+1 − 2 elements for some 𝑘 ∈ 𝑁 
 

- 𝐹 has: 
a. 𝑘 pairwise disjoint sets 𝑆1, … 𝑆𝑘 with sizes 2, 4, … , 2𝑘  
b. Two additional disjoint sets 𝑇0, 𝑇1  

i. Each of which contains half of the elements 
from each 𝑆𝑖 
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So, in the end:  

- 𝐴𝑝𝑝𝑟𝑜𝑥_𝑆𝑒𝑡_𝐶𝑜𝑣𝑒𝑟 → 𝑆𝑘 , 𝑆𝑘−1, … 𝑆1 
- 𝑂𝑃𝑇 → 𝑇0, 𝑇1 

- ratio: 𝑘
2
= 𝜃(log(𝑛)) 

This is also visible (slightly different) from Wikipedia here: 

 

So, basically: 

- The greedy algorithm selects 𝑘 sets 
- The optimal selects 2 sets 

No approximation is currently better than log (𝑛), unless 𝑃 ≠ 𝑁𝑃.  

An even better explanation of this example coming from here: 

 

  

https://www.cs.umd.edu/class/fall2017/cmsc451-0101/Lects/lect09-set-cover.pdf
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11 RANDOMIZED ALGORITHMS 

(Further readings: here) 

11.1 OVERVIEW 
 
Randomized algorithms are algorithms that may do random choices, basically using a source of 
randomness in its logic. Why? It may seem paradoxical, but adding these kinds of choices can make 
them simpler and faster. We would give some examples here: 

- Example 1: Randomized quicksort (RQS) – code on the side to make you remember QS 

The quicksort algorithm performs multiple steps. Each step chooses a pivot element and places it in 
its correct location. The random shuffle approach chooses the pivot location at random, basically 
“breaking” the bad input instance. If every recursive call does a random choice, it’s very hard to take 
always the “unlucky” element (which happens if the pivot is chosen progressively) 

 

 

In the worst case, quicksort has a complexity of 𝑇𝑄𝑆(𝑛) = 𝑂(𝑛2). 

Randomized quicksort (RQS) chooses the pivot at random. The expected complexity of RQS is: 
𝐸[𝑇𝑅𝑄𝑆]  =  𝑂(𝑛 log (𝑛)) (here 𝐸 = expectation, which is the “expected value” in probability, 
something that on average happens). 

- Choosing an element at random helps finding “more or less” an element in the middle of the 
sequence 

- This choice at random hides the worst-case inputs  
a. Not knowing the algorithm’s moves in advance 

We will come back to this algorithms at the end of this file, as one as of the last lessons. 

- Example 2: verifying polynomial identity  
a. (more discussion on this in “Further readings” of Moodle or above) 

The name says it all: check whether two polynomials are equivalent. Consider the following, where 
one asks if the polynomial not in normal form and the other in canonical form: 

(𝑥 + 1)(𝑥 − 2)(𝑥 + 3)(𝑥 − 4)(𝑥 + 5)(𝑥 − 6) ≡? 𝑥6 − 7𝑥3 + 25 

 

The obvious algorithm would transform 𝐻(𝑥) in canonical form ∑ 𝑐𝑖𝑥
𝑖𝑑=6

𝑖=0  and verify whether all the 
coefficients 𝑐𝑖 of all monomials are equal.  

The algorithm is pretty slow; considering 𝑑 =maximum degree, the complexity would be 𝑂(𝑑2). 

  

https://www.quantamagazine.org/how-randomness-improves-algorithms-20230403/
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Consider now a faster algorithm: 

- Choose a random integer 𝑟  // 𝑛𝑒𝑤 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 
- Compute 𝐻(𝑟)    // 𝑂(𝑑) 
- Compute 𝐺(𝑟)   // 𝑂(𝑑) 
- If 𝐻(𝑟) = 𝐺(𝑟)  

a. then return YES 
b. else return NO 

This algorithm is linear, but does this work? Consider the following example: 

𝑟 = 2 

𝐻(2) = 0  ⇒ 𝐻(𝑥) ≠ 𝐺(𝑥) 

𝐺(2) = 33 

In this case the algorithm always outputs the correct answer, but what if 𝐻(𝑟) = 𝐺(𝑟)? 

Consider the following example: 

𝑥2 + 7𝑥 + 1 ≡? (𝑥 + 2)2 

𝑟 = 2:  19 ≠ 16 

𝑟 = 1:  9 = 9 

 

 
The algorithm returns YES even if the two polynomial are not equivalent, so the choice is wrong. 

- If the equations is correct, the algorithm is always correct 
- Otherwise, the algorithm returns the wrong answer only if 𝑟 is a root of the polynomial 

𝐹(𝑥) = 𝐺(𝑥) − 𝐻(𝑥) = 0 

So basically, if the algorithm outputs NO is always correct, but may fail when it outputs YES. 
Therefore, the algorithm fails only if it is unlucky in choosing the value of 𝑟. But how likely is to choose 
such a value of 𝑟? 

If 𝑟 ∈ {1,2,… , 100𝑑} where 𝑑 is the max degree of 𝐹(𝑥) then: 

Pr(𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑓𝑎𝑖𝑙𝑠) ≤
𝑑

100𝑑
=

1

100
 

 

 

where “algorithm fails” means it returns how much the algorithm is wrong.  

- It’s unlikely that the algorithm fails 
a. But still not satisfactory, given there is a 1% error  

- What if I can make this probability much lower than that? 

  

unlucky choice of 𝑟 
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So we ask: how to reduce the possibility of error? 

- Run the algorithm 10 times (run multiple times and decrease exponentially the error) 
- If YES in all the 10 runs 

a. then return YES 
b. else return NO 

Now the probability of error is much lower, given the algorithms fails only if it fails all the 10 times. 
Probabilities are independent from each other, so you have to multiply them all:  

Pr(𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑓𝑎𝑖𝑙𝑠) ≤ (
1

100
)
10

= 10−20 < 2−64 

2−64 is comparable to the probability of a hardware error in your computer by cosmic radiation 
(quoting Donald Knuth, one of the most famous Computer Scientists). So, this algorithm is correct for 
all practical purposes.  

11.2 CLASSIFICATION OF RANDOMIZED ALGORITHMS 
 
We divide these into two main categories: 

1) Randomized algorithms that never fail, which are called “LAS VEGAS” algorithms  
a. (E.g., randomized quicksort)  

∀𝑖 ∈ 𝐼, 𝐴𝑅(𝑖) = 𝑠       𝑠. 𝑡. (𝑖, 𝑠) ∈ Π 

where Π ⊆ 𝐼 𝑥 𝑆 is the decisional problem, 𝑖 is an input instance, 𝐴𝑅  is the random algorithm 
which applied to the input instance produces a solution 𝑠 s.t. the couple (𝑖, 𝑠) belongs to Π 

Observation: 𝑠 may not be the same ∀𝑖. 

Randomness comes into play in the analysis of the complexity – because it depends from the 
randomness of the choices. ∀𝑛, 𝑇(𝑛) is a random variable of which we usually study its expectation 

𝐸[𝑇(𝑛)] or Pr(𝑇(𝑛) > 𝑐 ∗ 𝑓(𝑛)) → ≤ 1

𝑛𝑘
 (so, for some constants 𝑐 and 𝑘, we say that 𝑇(𝑛) = 𝑂(𝑓(𝑛)) 

with high probability (here, 𝑇(𝑛) is called complexity function) – this second one is more powerful than 

the first, so 𝑃𝑟 more powerful than 𝐸 → Pr(𝐴Π(𝑖) 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑠 ≥ 𝑐 ∗ 𝑓(𝑛) 𝑠𝑡𝑒𝑝𝑠) ≤
1

𝑛𝑑
 

- This is done in order to reduce the probability the algorithm is not precise, hence the 
probability the algorithm takes “𝑋” time is very low 

- Here the input is assumed to be from a probability distribution 

The space of probabilities corresponds to the random choices made by the algorithm.  

- (Do not confuse this with the probabilistic analysis of a deterministic algorithm, where the 
space of probabilities = distribution of the inputs) 

Specifically, the expected runtime be finite, where the expectation is carried out over the space of 
random information, or entropy, used in the algorithm 
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2) Randomized algorithms that may fail are called “MONTE CARLO” algorithms 
a. E.g., verifying polynomial identities 

∀𝑖 ∈ 𝐼, 𝐴𝑅(𝑖) = 𝑠  𝑠. 𝑡.  (𝑖, 𝑠) ∉ Π 

We study Pr ((𝑖, 𝑠) ∉ Π) as a function of 𝑛 = |𝑖| → family of random variables (binary) 

Moreover, even 𝑇(𝑛) may be a random variable. For decision problems, these algorithms can be 
divided into: 

- One-sided: they may fail only on one answer 
a. E.g., can make right all YES instances but may be wrong on all NO instances 

- Two-sided: they may fail in both answers 
a. E.g., it can make wrong all YES instances but can make wrong all NO instances 

In this course, we will see: 

- One LAS VEGAS algorithm  
a. Randomized Quicksort – we’ll see a high probability analysis 

- One MONTE CARLO algorithm 
a. Karger’s algorithm for Minimum Cut – again, with an analysis in high probability 

Definition: given Π ⊆ 𝐼 × 𝑆 an algorithm 𝐴Π has complexity 𝑇(𝑛) = 𝑂(𝑓(𝑛)) with high probability 
(w.h.p) if ∃ constants 𝑐, 𝑑 > 0 s.t. ∀𝑖 ∈ 𝐼, |𝑖| = 𝑛,  

Pr (𝐴Π(𝑖) 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑖𝑛 > 𝑐 ∗ 𝑓(𝑛) 𝑠𝑡𝑒𝑝𝑠) ≤
1

𝑛𝑑
 

→ 𝑂(𝑓(𝑛)) 𝑤. 𝑝. > 1 −
1

𝑛𝑑
→𝑛→+∞ 1 

Definition: given Π ⊆ 𝐼 × 𝑆 an algorithm 𝐴Π is correct with high probability (w.h.p) if ∃ constant 𝑑 > 0 

s.t. ∀𝑖 ∈ 𝐼, |𝑖| = 𝑛, Pr ((𝑖, 𝐴Π) ∉ Π ≤
1

𝑛𝑑
 

The characterization with high probability is always more powerful that the average case. 

ℎ𝑖𝑔ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ⇒ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 (viceversa usually is not true) 

11.2.1 Markov’s lemma 
 
Exercise 

Assume (by hypothesis) that: 

1) 𝐴Π LAS VEGAS, with 𝑇𝐴Π(𝑛) = 𝑂(𝑓(𝑛)) w.h.p; in particular, Pr (𝑇𝐴Π(𝑛) > 𝑐 ∗ 𝑓(𝑛)) ≤
1

𝑛𝑑
 

2) 𝐴Π has a worst-case deterministic complexity 𝑂(𝑛𝑎), 𝑎 ≤ 𝑑 ∀𝑛 

Show that 𝐸[𝑇𝐴Π(𝑛)] = 𝑂(𝑓(𝑛)) (that means, in high probability we get the average value, usually not 
true).  
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We will apply the following: 

Markov’s lemma: let 𝑇 be a non-negative, bounded (= 𝑏 ∈ ℕ 𝑠. 𝑡. Pr(𝑇 > 𝑏) = 0), integer, random 
variable. Then ∀𝑡 s.t. 0 ≤ 𝑡 ≤ 𝑏,  

𝑡 ∗ Pr(𝑇 ≥ 𝑡) ≤ 𝐸[𝑇] ≤ 𝑡 + (𝑏 − 𝑡)Pr (𝑇 ≥ 𝑡) 

This basically gives an upper bound on the probability that a non-negative random variable is greater 
than or equal to some positive constant (usually you see the first inequality). 

Proof 

Using the upper bound of the lemma, the running time 𝑇𝐴Π(𝑛) is non-negative and bounded by 𝑂(𝑛𝑎). 
Hence, 𝑏 = 𝑂(𝑛𝑎). For the bound, we have 𝑐 ∗ 𝑓(𝑛) ≤ 𝑡 ≤ 𝑂(𝑛𝑎). 

𝐸[𝑇𝐴Π(𝑛)] ≤ 𝑐 ∗ 𝑓(𝑛) +
(𝑛𝑎 − 𝑐) ∗ 𝑓(𝑛)

𝑛𝑑
  

 

 

≤ 𝑐 ∗ 𝑓(𝑛) +
𝑛𝑎

𝑛𝑑
≤ 𝑐 ∗ 𝑓(𝑛) + 1 

= 𝑂(𝑓(𝑛)) 

A more complete explanation here: 
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11.3 KARGER’S ALGORITHM FOR MINIMUM CUT 
 
A quite simple MONTE CARLO and elegant algorithm created in 1993. Let’s start from the problem 
itself it wants to solve: the minimum cut revolves finding a cut of minimum size, that is, the minimum 
number of edges whose removal disconnects the graph.  

Below, you can see an example to help yourself: 

 

 

 

 

 

 

 
 

Applications: network reliability. war, computer graphics, etc. 

Remark: we are talking about unweighted graphs, but it’s also studied in weighted graphs. As a 
personal side note, this is the dual problem of maximum flow. As of now, there are no deterministic 
algorithms doing better.  

Karger actually solves a more general problem: minimum cut on multigraphs (i.e., 
multiple edges between two vertices are allowed) – an example of one in the right figure. 

Definition: A multiset is a collection of objects with repetitions allowed. It’s usually 
denoted between a couple of brackets, as you can see here. 

𝑆 = {{𝑣: 𝑣 ∈ 𝑆 − 𝑜𝑏𝑗𝑒𝑐𝑡𝑠}} 

∀ 𝑜𝑏𝑗𝑒𝑐𝑡 𝑜 ∈ 𝑆,𝑚(𝑜) ∈ ℕ ∖ {0} 

where 𝑚 = multiplicity, so how many copies of 𝑜 are in 𝑆.  

Definition: a multigraph 𝐺 = (𝑉, ℰ) s.t. ∀ 𝑉 ⊆ ℕ, 𝑉 finite and ℰ is a multiset of elements (𝑢, 𝑣) 𝑠. 𝑡. 𝑢 ≠
𝑣 (considering ℰ is not an uppercase epsilon, but in LaTeX is written as (\mathcal(E)) and it’s 
pronounced normally “E”).  

The following is the one seen in course example: 

 

 

 

Note: A simple graph 𝐺 = (𝑉, 𝐸) is also a multigraph. 
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Definition: given 𝐺 = (𝑉, ℰ) connected, a cut 𝐶 ⊆ ℰ is a multiset of edges s.t. 𝐺′ = (𝑉, ℰ ∖ 𝐶) is not 
connected.  

- A cut is a set of edges disconnecting the starting graph 
a. Creating at least two connected components 

- Consider the following notions: 
a. Path in a multigraph = sequence of vertices where ∀ couple of vertices ∃ an edge 
b. Connectivity in a multigraph = a multigraph is connected if ∀ couple of vertices ∃ a 

path connecting them 
- The problem is to choose the smallest set of edges that disconnects the multigraph 

Actually, the probability that at the first run Karger’s algorithm returns a minimum cut is not high. The 
idea is to repeat the procedure 𝑘 times to reduce the probability of error. The value of 𝑘 will be 
determined by the analysis of the algorithm. 

Let’s give Karger’s idea here: 

1. Choose an edge at random 

2. “Contract” the two vertices of that edge, removing all the edges incident both vertices 

3. Repeat until only 2 vertices remain: return the edges between those vertices 

This works with very low probability, but let’s use the trick we saw already: repeating this a good 
enough number of times, can actually refine the analysis and obtain a good level of probability.  

We see below two examples of the same contraction in Karger and on the right a generic contraction. 

- Basically, it makes the two vertices to collapse in just one vertex 
connected with all the previous adjacent vertices 

- If as a result there are several edges between some pairs of (newly 
formed) vertices, retain them all 

 

 

Definition: given 𝐺 = (𝑉, ℰ) and 𝑒 = (𝑢, 𝑣) ∈ ℰ, the contraction of 𝐺 with respect to 𝑒, 𝐺
𝑒
= (𝑉′, ℰ′) is 

the multigraph with 𝑉′ = 𝑉 ∖ {𝑢, 𝑣} ∪ {𝑧𝑢,𝑣} with 𝑧𝑢,𝑣 ∉ 𝑉 coming from the fusion of 𝑢 and 𝑣: 

ℰ′ = ℰ ∖ {{(𝑥, 𝑦) 𝑠. 𝑡. (𝑥 = 𝑢) 𝑜𝑟 (𝑥 = 𝑣)}} 

∪ {{(𝑧𝑢,𝑣, 𝑦) 𝑠. 𝑡. (𝑢, 𝑦) ∈ ℰ 𝑜𝑟 (𝑢, 𝑦) ∈ ℰ, 𝑦 ≠ 𝑢 𝑎𝑛𝑑 𝑦 ≠ 𝑣 

It follows that: 

- |𝑉′| = |𝑉| − 1 ⇒ 𝑛 − 2 iterations are needed  (= |𝑉| − 2 + 1) 
- |ℰ′| = |ℰ| − 𝑚(𝑒) ≤ |ℰ| − 1  (the edge linking two nodes to contract disappears) 
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We describe the algorithm here: 

𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁 (𝐺 = (𝑉, ℰ))  

 for 𝑖 = 1 to 𝑛 − 2: do 

  𝑒 ← 𝑅𝐴𝑁𝐷𝑂𝑀(ℰ) // 𝑐ℎ𝑜𝑜𝑠𝑒 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑎𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛 𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑡 

  𝐺′ = (𝑉′, ℰ′) ←
𝐺

𝑒
 // 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑛 𝑔𝑟𝑎𝑝ℎ 𝑤𝑖𝑡ℎ 𝑟𝑎𝑛𝑑𝑜𝑚 𝑒𝑑𝑔𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 

  𝑉 ← 𝑉′   // 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑔𝑟𝑎𝑝ℎ 𝑤𝑖𝑡ℎ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑎𝑛𝑑 𝑒𝑑𝑔𝑒𝑠 

  ℰ ← ℰ′ 

 return |ℰ|   // 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ 𝑎𝑛𝑑 𝑖𝑡𝑠 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 

Let’s see here an example of the algorithm running, in which we contract vertices step by step 
choosing edges at random, not choosing the correct min-cut as you can see: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

⇒ unsuccessful run of 𝐹𝑈𝐿𝐿 − 𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁, because it didn’t choose the correct minimum cut 
upfront as said, so we end up with more edges than the ones actually needed in contraction. This 
happens because the algorithm is randomized, so finding the minimum cut in the first run is just luck: 
that’s why we have to do multiple runs to make higher the probability of a good run.  
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Running the algorithm for 𝑘 = (𝑛
2
) times, the probability of success can be made arbitrarily high. 

The following example can make your ideas clearer on this (I hope): 

 

 

 

 

 

 

We give here the full Karger algorithm now, which idea is “hoping” to do a contraction on an edge of 
the minimum cut so to preserve said minimum cut, which is then returned as you can see. 

Consider 𝑘 → how many times to repeat 𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁, which depends on the probability of 
making a mistake – hence, it depends on the analysis of the algorithm) 

𝐾𝐴𝑅𝐺𝐸𝑅(𝐺 = (𝑉, ℰ), 𝑘)   

 𝑚𝑖𝑛 − 𝑐𝑢𝑡 = ℰ  

 for 𝑖 = 1 𝑡𝑜 𝑘: do 

  𝑡 = 𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁(𝐺) 

  if |𝑡| < |𝑚𝑖𝑛 − 𝑐𝑢𝑡| then 

   𝑚𝑖𝑛 − 𝑐𝑢𝑡 = 𝑡 

 return 𝑚𝑖𝑛 − 𝑐𝑢𝑡 

11.4 ANALYSIS OF KARGER’S ALGORITHM  
 
We’ll show for which value of 𝑘 the algorithm returns a minimum cut with high probability, effectively 
proving the cardinality of the min-cut does not decrease. 

Property: ∀ cut 𝐶′ in 𝐺
𝑒

 ∃ a cut 𝐶 in 𝐺 of the same cardinality ⇒ |𝑚𝑖𝑛 − 𝑐𝑢𝑡 𝑖𝑛 𝐺
𝑒
| ≥ |𝑚𝑖𝑛 − 𝑐𝑢𝑡 𝑖𝑛 𝐺|. 

Proof: constructive – we’ll determine the corresponding cut 𝐶 in 𝐺.  

𝐶′ in 𝐺/(𝑒 = (𝑢, 𝑣))  → 𝐶 in 𝐺 by substituting each edge (𝑧𝑢,𝑣 , 𝑦) in 𝐶′ with the corresponding (𝑢, 𝑦) or 
(𝑣, 𝑦).  

 

 

 

  

repeats 𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁 𝑘 
times to reduce the probability of 
error 

to be determined by the analysis 
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|𝐶′| = |𝐶|. It remains to be shown that 𝐶 is a cut in 𝐺.  

The hypothesis is the following one: 𝐶′ is a cut in 𝐺/𝑒 = (𝑉′, ℰ′) ⇒ 𝐶′ separates 𝑉′ in 2 connected 
components; let 𝑉1 ⊂ 𝑉′ the connected component containing 𝑧𝑢,𝑣 and let 𝑥 ∉ 𝑉1. Then, in 𝐺/𝑒 every 
path from 𝑧𝑢,𝑣 and 𝑥 must use an edge in 𝐶′ (so, one which is not inside of 𝑉1).  

 

 

 
Now we’ll show that 𝐶 in 𝐺 disconnects 𝑢 and 𝑣 from 𝑥: assume, by contradiction, that 𝐶 is not a cut in 
𝐺 ⇒ ∃ a path between 𝑢 and 𝑥 after the removal of 𝐶 in 𝐺 (so, from ℰ). Then, the path between 𝑧𝑢,𝑣 and 
𝑥 “survives” the removal of 𝐶′ in 𝐺/𝑒, i.e., 𝐶′ is not a cut in 𝐺/𝑒 (because, if it survives, it means it does 
not use edges in 𝐶): contradiction.  

- We have shown the contraction decreases the number of cuts  
a. (the cuts that disappear in the contracted graph are all and only those affected by e-

side selection) 
- That is, it can make some cuts disappear, certainly those affected by selection of 𝑒 
- All others are preserved 

This means that the only time the algorithm fails is when an edge belonging to a minimum cut in 𝐺 is 
hit by the random choice. 

- Basically, by proving the property above we have shown that 
a. If the algorithm never hits an edge belonging to a minimum cut 
b. Then it returns a correct solution (because the minimum cut is preserved in 𝐺/𝑒) 

What are the cuts that disappear in 𝐺/𝑒? Those hit by the random choice ⇒ I want the probability of 
not hitting edges of the minimum cut to be sufficiently high.  

Intuition: |𝑚𝑖𝑛 − 𝑐𝑢𝑡| is a small fraction of |ℰ|. What 𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁 does is taking random 
edges hoping to not take a minimum-cut edge. We hope |𝑚𝑖𝑛 − 𝑐𝑢𝑡| is a small percentage of all the 
edges. This can be proven true easily. 

Property: let a multigraph 𝐺 = (𝑉, ℰ), |𝑉| = 𝑛. If 𝐺 has a min-cut of size 𝑡, then |ℰ| ≥ 𝑡 ∗ 𝑛
2

 

(Basically, the key property behind Karger’s idea = number of edges is 𝑛 times 𝑡 compared to the 
cardinality of the minimum cut, so it can be much bigger) 

Proof: 

Consider the following multigraph, so here the notion of cut is visible: 

  

 

By definition of minimum cut we have 𝑑(𝑣) ≥ 𝑡 for any vertex 𝑣 ∈ 𝑉, where 𝑑(𝑣) denotes the degree of 
𝑣. This is because if we take a node and remove all the edges incident to that node, that’s a cut. 
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The sum of degrees is then split left and right, like follows: 

  
 

 

2|ℰ| ≥ 𝑡 ∗ 𝑛 

Specifically: 

∑𝑑(𝑣) = 2𝑚 ≥ 𝑡 ∗ 𝑛

𝑣∈𝑉

 

𝑚 = |𝐸| ≥ 𝑡 ∗
𝑛

2
 

The analysis itself is based on conditional probabilities.  

Definition: 𝐸1, 𝐸2 events are independent if Pr(𝐸1 ∩ 𝐸2) = Pr(𝐸1) ∗ Pr (𝐸2) 

Definition: Given Pr(𝐸1) > 0 then Pr(𝐸2|𝐸1) =
Pr(𝐸1∩𝐸2)

Pr(𝐸1)
. This can be defined as the conditional 

probability, which refers to the chances that some outcome 𝐴 occurs given that another event 𝐵 has 
also occurred.  

This can also be extended up to 𝑘 events: 

Pr(𝐸1 ∩ 𝐸2 ∩ …∩ 𝐸𝑘) = Pr(𝐸1) Pr(𝐸2|𝐸1) Pr(𝐸3|𝐸1 ∩ 𝐸2)…Pr (𝐸𝑘|𝐸1 ∩ …∩ 𝐸𝑘−1) 

Such can be proven by induction on 𝑘. This will be used to evaluate the probability that 
𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁 returns a minimum cut, where 𝐸𝑖 = 𝑖𝑡ℎ contraction which did not hit an edge of 
the min-cut.  

Theorem: The probability that 𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁 returns a minimum cut in 𝐺 is at least 2

𝑛∗(𝑛−1)
 

Proof: Although there may be > 1 min-cuts, we will actually prove that, for any min-cut 𝐶, the 

probability that the algorithm returns that particular min-cut 𝐶 is at least 2

𝑛∗(𝑛−1)
. So, let 𝐶 be some 

specific min-cut.  

Let’s denote the size as 𝑡 = |𝐶| and as 𝐸𝑖  the variable meaning “in the 𝑖𝑡ℎ contraction I did not hit an 
edge in 𝐶” or better “avoid 𝐶” 

- Observe that if only one minimum cut is considered, I am lowering the probability of success (I 
am okay with seeing the worst case).  

We consider the event of a single shoot of the graph as the event 𝐸1. Consider the complement event 
of the previous one: here, we will take a number of edges dependent on the actual vertices linked to 
that. More specifically: 

Pr(𝐸1) =
𝑡

|ℰ| ≥ 𝑡 ∗
𝑛
2

≤
𝑡

𝑡 ∗
𝑛
2

=
2

𝑛
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With high probability, after the first “fire” session, the cut was not properly destroyed. We have to 
analyze what happens next, so the effect of the other iterations. We then use conditional probability in 
order to do so, which follows next here.  

Pr(𝐸1) = 1 − Pr(𝐸1) ≥ 1 −
𝑡

𝑡 ∗
𝑛
2

= 1 −
2

𝑛
 

𝐸2 is the probability that the second contraction avoid the minimum cut. This event is conditioned by 
the success of the previous; if 𝐶 survived, it is inside a “transformed” cut (so, with different naming of 
the edges) of size |𝐶| = |𝐶′| = 𝑡. 

We lost one vertex here because of contraction, so considering the previous, we have (𝑛 − 1) vertices 
here:  

Pr(𝐸2|𝐸1) ≥ 1 −
𝑡

𝑡 ∗
(𝑛 − 1)
2

= 1 −
2

𝑛 − 1
 

The probability starts to get a little lower this way so, going this direction, the probability of success 
will become lower and lower (given the graph gets smaller and there are only a few vertices).  

⋮ 

Pr(𝐸𝑖|𝐸1 ∩ 𝐸2 ∩ …𝐸𝑖−1) ≥ 1 −
𝑡

𝑡 ∗
(𝑛 − 𝑖 + 1)

2

= 1 −
2

𝑛 − 𝑖 + 1
 

Pr (𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁 𝑠𝑢𝑐𝑐𝑒𝑒𝑑𝑠)  = Pr (⋂ 𝐸𝑖) ≥ ∏ (1 −
2

𝑛−𝑖+1
)𝑛−2

𝑖=1
𝑛−2
𝑖=1  

=∏
𝑛 − 𝑖 − 1

𝑛 − 𝑖 + 1

𝑛−2

𝑖=1

 

=
𝑛 − 2

𝑛
∗
𝑛 − 3

𝑛 − 1
∗
𝑛 − 4

𝑛 − 2
…
3

5
∗
2

4
∗
1

3
=

2

𝑛(𝑛 − 1)
 

≥
2

𝑛2
 

We have shown, executing 𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁 only once, the probability of getting an edge not in 
the minimum cut is low, but not too low – given cuts in a graph may be even exponential in number! 

So, eventually, this will return the min-cut. 𝐾𝐴𝑅𝐺𝐸𝑅 amplifies this probability by repeating 
𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁 𝑘 times (hence, correctly increasing and amplifying the probability). 

We have to compute the probability the 𝑘 iterations do not accumulate the size of the min-cut – so, 
none of the 𝑘 runs returns the minimum cut. 

Pr (𝑡ℎ𝑒 𝑘 𝑟𝑢𝑛𝑠 𝑜𝑓 𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁 𝑑𝑜 𝑛𝑜𝑡 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑚𝑖𝑛 𝑐𝑢𝑡) ≤ (1 − 2

𝑛2
)
𝑘

≤
1

𝑛𝑑
 for some constant 𝑑 > 0 

The previous one is the probability of an unsuccessful event, so we want it very low, something like 1
𝑛𝑑

. 

  

i.e., no edge of 𝐶 is ever contracted 
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We want to find a value for 𝑘 such that (1 − 2

𝑛2
)
𝑘
≤

1

𝑛𝑑
. In this case, it’s standard the use of this 

inequality: 

(1 +
𝑥

𝑦
)
𝑦

≤ 𝑒𝑥, 𝑦 ≥ 1, 𝑦 ≥ 𝑥 

This inequality is derived from the exponential function and the binomial expansion. It represents an 

upper bound on the expression (1 + 𝑥

𝑦
)
𝑦

, showing that it grows slower than 𝑒𝑥. The probability of not 

contracting the minimum cut in each iteration needs to be bounded and manipulated to ensure the 
overall algorithm's success probability is high. 

By choosing 𝑘 = 𝑑𝑛2ln (𝑛) 

2
 it follows that: 

((1 −
2

𝑛2
)
𝑛2

)

ln(𝑛𝑑)

≤ 𝑒−ln(𝑛
𝑑) =

1

𝑛𝑑
 

Given I am curious, I asked myself: why exactly that value for 𝑘? 

Consider the probability of success if 2
𝑛2

 while the failure is, by complement, 1 − 2

𝑛2
 which, amplified 

by 𝑘 runs, becomes (1 − 2

𝑛2
)
𝑘

. The constant 𝑑 is the desired level of confidence to keep the wanted 

threshold (in this case 1
𝑛𝑑

) as low as possible. Then, using some good old GPT-4: 
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Moving on:  

(1 −
2

𝑛2
)
𝑘=𝑛2

≤ 𝑒−2 =
1

𝑒2
→ is not in the form 1

𝑛𝑑
 

Recall the following: 

𝑒−ln(𝑛
𝑑) =

1

𝑛𝑑
 

Let’s apply that: 

((1 −
2

𝑛2
)
𝑛2

)

ln(𝑛𝑑)

= (1 −
2

𝑛2
)
𝑛2 ln(𝑛𝑑)

 

Let’s wrap up (here, in the prof. notes, 𝑑 magically disappears, but I assume it to be 1 so this works): 

(1 −
2

𝑛2
)
𝑘=
𝑑𝑛2 ln(𝑛𝑑)

2
= ((1 −

2

𝑛2
)
𝑛2

)

ln(𝑛𝑑)
2

 

≤ (𝑒−2)
ln(𝑛𝑑)
2 = 𝑒−ln(𝑛

𝑑) = 𝑛𝑑 =
1

𝑛𝑑
 

Then, by choosing that value for 𝑘 the Karger’s algorithm succeeds with high probability:  

⇒ Pr(𝐾𝐴𝑅𝐺𝐸𝑅 𝑠𝑢𝑐𝑐𝑒𝑒𝑑𝑠) > 1 −
1

𝑛𝑑
 

So, in the end, the Karger algorithm accumulates the size of the min-cut with probability at least 1
𝑛𝑑

. 

Complexity: 𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁 by itself has a complexity of 𝑂(𝑛 ∗ 𝑛) = 𝑂(𝑛2). Karger’s algorithm 
has complexity 𝑂(𝑛4 log(𝑛)).  

This can be improved with speeding up Karger’s algorithm using the Karger-Stein variant (1996), using 
a stack to shrink recursively.  

The idea is the following: Pr (𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑜𝑓 𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁) = 2

𝑛
→

2

𝑛−1
→

2

𝑛−2
 

  

In the first few iterations I have a very good probability of error, while as it goes on, the probability 
increases. 

- The idea is to keep as contractions, common to all 𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁 repetitions, the first 
iterations of 𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁 because there is no point in repeating them 

a. These are already very good iterations 
b. and I will consider them to be the initial iterations for all the repeated 

𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁𝑆 that I will do later 

do not repeat the first 
∼

𝑛

√2
 contractions 
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So, having common contractions for all repetitions, we will save a lot of work, like years ago would 
characterize: 

 

 

This way, we will not repeat the first ∼ 𝑛

√2
 iterations → 𝑂(𝑛2 log3(𝑛)) and correct w.h.p. 

The current fastest algorithm has complexity 𝑂(𝑚(log(𝑛)) (world record set in 2020). 

So, in summary:  

- Karger's algorithm effectively finds the minimum cut of a graph by repeatedly contracting 
edges and running multiple iterations to increase the probability of success 

- By using conditional probability analysis, we can show that the algorithm succeeds with high 
probability when run sufficiently many times 

- The key to the algorithm's efficiency lies in its use of randomness and the ability to amplify 
success probability through repeated trials 

11.4.1 Exercises 

 
Programming exercise 

Implement Karger’s algorithm and compare it with a deterministic algorithm.  

Solution 

import random  

from copy import deepcopy  

def karger_min_cut(graph):  

""" Implements Karger's algorithm to find the minimum cut in an 

undirected graph.  

Args: graph (dict): A dictionary representing the graph, where keys are 

vertices and values are lists of adjacent vertices.  

Returns: int: The size of the minimum cut found. """ def contract(graph, 

u, v): """ Contracts the edge (u, v) in the graph.  

"""  

new_graph = deepcopy(graph)  

for neighbor in new_graph[u]:  

if neighbor != u and neighbor != v:  
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new_graph[v].append(neighbor)  

new_graph[neighbor].remove(u)  

new_graph[neighbor].append(v)  

del new_graph[u] 

 new_graph[v] = [w for w in new_graph[v] if w != v]  

return new_graph  

# Repeat Karger's algorithm n^2 * log(n) times to increase the 

probability of finding the minimum cut  

n = len(graph)  

min_cut_size = float('inf')  

for _ in range(n**2 * int(max(1, round(2 * n * (n + 1) / 2)))):  

curr_graph = deepcopy(graph)  

while len(curr_graph) > 2:  

u = random.choice(list(curr_graph.keys()))  

v = random.choice(curr_graph[u])  

curr_graph = contract(curr_graph, u, v) 

 min_cut_size = min(min_cut_size, 

len(curr_graph[next(iter(curr_graph))]))  

return min_cut_size 

This implementation repeatedly contracts edges in the graph until only two vertices remain. The size 
of the cut represented by the edges between these two vertices is a candidate for the minimum cut. 
The algorithm is repeated n^2 * log(n) times to increase the probability of finding the minimum cut, as 
suggested by the analysis of the algorithm. 

To compare Karger's algorithm with a deterministic algorithm, we can implement a simple 
deterministic algorithm that enumerates all possible cuts and finds the minimum. Here's an 
implementation of such an algorithm: 

def deterministic_min_cut(graph): 

    """ 

    Finds the minimum cut in an undirected graph by enumerating all 

possible cuts. 

    Args: 

        graph (dict): A dictionary representing the graph, where keys are 

vertices 

        and values are lists of adjacent vertices. 

    Returns: 
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        int: The size of the minimum cut found. 

    """ 

    def enumerate_cuts(graph, visited, curr_cut): 

        if len(visited) == len(graph): 

            cuts.append(curr_cut) 

            return 

        for vertex in graph: 

            if vertex not in visited: 

                new_visited = visited.copy() 

                new_visited.add(vertex) 

                new_cut = curr_cut.copy() 

                for neighbor in graph[vertex]: 

                    if neighbor not in new_visited: 

                        new_cut.add((vertex, neighbor)) 

                enumerate_cuts(graph, new_visited, new_cut) 

    cuts = [] 

    enumerate_cuts(graph, set(), set()) 

    min_cut_size = min(len(cut) for cut in cuts) 

    return min_cut_size 

This algorithm uses a recursive function to generate all possible cuts in the graph. It maintains a set of 
visited vertices and a set of edges that form the current cut. At each step, it considers adding an 
unvisited vertex to the visited set and updates the current cut accordingly. Once all vertices have been 
visited, the current cut is added to the list of cuts. Finally, the algorithm finds the minimum cut size 
from the list of all cuts. 

While the deterministic algorithm guarantees to find the minimum cut, its time complexity is 
exponential in the number of vertices, making it impractical for large graphs. Karger's algorithm, on 
the other hand, has a running time of 𝑂(𝑛2  ∗  𝑚), where n is the number of vertices and 𝑚 is the 
number of edges. Although Karger's algorithm does not guarantee to find the minimum cut, it has a 
high probability of finding the minimum cut when repeated sufficiently many times. 

In practice, Karger's algorithm is preferred for large graphs due to its efficient running time and 
probabilistic guarantee of finding the minimum cut. The deterministic algorithm can be useful for 
small graphs or as a reference implementation to verify the correctness of other algorithms. 

Exercise 

Using the analysis of Karger's algorithm, show that the n° of distinct min-cuts in a graph is at most 
𝑛(𝑛−1)

2
. Also, show that this bound is tight.  
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Solution 

Let 𝐶1, 𝐶2, … , 𝐶𝑗 denote the min-cuts of a graph.  

We have shown that 𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁 returns a particular min-cut 𝐶𝑖 with probability ≥ 2

𝑛(𝑛−1)
.  

So, if we denote with 𝐴𝑖  the event that 𝐶𝑖 is returned by 𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁, we can write: 

Pr(𝐴𝑖) ≥
2

𝑛(𝑛 − 1)
 

Given the probability of the union of this event cannot be greater than 1, this term will not be that high. 
Observe that events 𝐴1, 𝐴2, …𝐴𝑗 are disjoint. Then: 

Pr(𝐴1 ∪ 𝐴2 ∪…∪ 𝐴𝑗) =∑Pr(𝐴𝑖)

𝑗

𝑖=1

 

By definition, Pr(𝐴1 ∪ 𝐴2 ∪ …∪ 𝐴𝑗) ≤ 1, so ∑ Pr(𝐴𝑖) ≤ 1 ⇒ 𝑗 ≤
𝑛(𝑛−1)

2

𝑗
𝑖=1  

 

This bound is tight: in a cycle of 𝑛 vertices every pair of edges is a distinct min-cut: 
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12 CHERNOFF BOUNDS 

Chernoff bounds are tools from modern probability theory that are frequently used in the analysis of 
randomized algorithms. They’re a more powerful version of the Markov’s lemma.  

Consider the phenomenon of “concentration of measure”: 

- Toss a coin: 
a. 1 time → outcome is unpredictable 
b. 1000 times → outcome is sharply predictable! 

- Application 
a. 𝑇(𝑛) guaranteed to be concentrated around some value 

In many cases, the study of Pr (𝑇(𝑛) > 𝑐 ∗ 𝑓(𝑛)) can be rephrased of the study of the distribution of a 
sum of random variables. In this course, we will talk about indicator random variables (also called 0 −
1 random variables or even Poisson trials), which map every outcome to either 0 or 1. This can be 
represented as: 

𝑟 = {
1, 𝑖𝑓 𝑡𝑟𝑖𝑎𝑙 𝑖𝑠 𝑎 𝑠𝑢𝑐𝑐𝑒𝑠𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   

 

In general, this can be represented as: 

𝑋 =∑𝑋𝑖  

𝑛

𝑖=1

       𝑋𝑖 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

The variable 𝑋 counts the number of successes (generally, the outcome) obtained by the 𝑛 indicator 
variables and 𝑋𝑖  is the indicator random variable associated to a specific event. We’ll usually have 
that 𝑋𝑖’s are independent between each other (=Δ means “equal by definition”).  

Pr(𝑋1 = 1) = 𝑝𝑖  

𝐸[𝑋] = 𝐸[∑𝑋𝑖] =∑𝐸[𝑋𝑖]

𝑛

𝑖=1

=∑𝑝𝑖 =
Δ 𝜇

𝑛

𝑖=1

 

𝑛

𝑖=1

 

(the previous sum is the average of the sum of the variables 𝑋𝑖) 

We analyze the probability that 𝑋 deviates from 𝐸[𝑋] (so, from the average and this is very low): 

Pr(𝑋 > (1 + 𝛿)𝜇) ≤
𝐸[𝑋]

(1 + 𝛿)𝜇
=

𝜇

(1 + 𝛿)𝜇
=

1

1 + 𝛿
 

 

Usually, using Markov inequality, this is not a very good bound. 

That is, the probability of a certain event 𝑋 deviating from its mean is very low. To be perfectly precise: 

- It is a sharper bound than the first- or second-moment-based tail bounds such as Markov's 
inequality or Chebyshev's inequality, which only yield power-law bounds on tail decay  

- However, when applied to sums the Chernoff bound requires the random variables to be 
independent, a condition not required by either Markov's inequality or Chebyshev's inequality 

Markov → Pr(𝑋 ≥ 𝑡) ≤ 𝐸[𝑋]

𝑡
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Generally, Chernoff bounds are a tool which allow to study the 
concentration of an event around its mean (specifically, in the 
“tail” – see figure – so, far from the mean) and to overcome the 

previous fact we use them. Specifically, they provide 
exponentially decreasing bounds on the tail distributions of 

sums of independent random variables. 

- The markup is a little loose, not very significant 
- Better augmentation allows me to move from analysis to the average case to the more 

desirable high probability analysis 

The idea between Chernoff bounds is to transform the original random variable into a new one, such 
that the distance between the mean and the bound we will get is significantly stretched. It answers the 
question about how tight the bound we can get when having more information about the distribution 
of the random variables. 

12.1 OVERVIEW: A MORE POWERFUL PROBABILISTIC TOOL 
 
We give Chernoff’s lemma here (Chernoff bound): let 𝑋1, 𝑋2, …𝑋𝑛 independent indicator random 
variables where 𝐸[𝑋𝑖] = 𝑝𝑖, 0 < 𝑝𝑖 < 1. Let 𝑋 = ∑ 𝑋𝑖

𝑛
𝑖=1  and 𝜇 = 𝐸[𝑋]. Then ∀ 𝛿 > 0: 

Pr(𝑋 > (1 + 𝛿)𝜇) < (
𝑒𝛿

(1 + 𝛿)(1+𝛿)
)

𝜇

 

This is known as “Multiplicative Chernoff Bound”.  

In words: the outcome concentrates around the min is very high – to the contrary, the probability of 
deviating from the min should be very low. For details about the proof see here (third page) or see 
“Probability and Computing” book in the related “Chernoff Bounds” chapter.  

Consider the example of coin tossing: there are 𝑛 coin flips, so characterized by 𝑋1, 𝑋2, … 𝑋𝑛 (of 
course, the coin is fair): 

Pr(𝑋𝑖 = 1) =
1

2
   ∀𝑖 

 

Basically, 𝑋1 = 1 means “get heads”, otherwise 𝑋𝑖 = 0 means “get tails” 

𝑋 =∑𝑋𝑖 = 𝑛
°

𝑛

𝑖=1

𝑜𝑓 ℎ𝑒𝑎𝑑𝑠 𝑖𝑛 𝑛 𝑐𝑜𝑖𝑛 𝑓𝑙𝑖𝑝𝑠 

Specifically, the sum counts the number of heads (successes) obtained by flipping 𝑛 times the coin – 

so, I expect to get 𝑛
2

 heads.  

𝐸[𝑋] =
𝑛

2
 

Question: What’s the probability of getting more than 3
4
𝑛 heads? Veeery low. 

Here, both Markov and Chernoff lemmas will be applied.  

https://people.eecs.berkeley.edu/~jfc/cs174/lecs/lec10/lec10.pdf
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1) Markov’s lemma 

Pr (𝑋 >
3

4
𝑛) ≤

𝐸[𝑋]

3
4𝑛

=

𝑛
2
3
4𝑛

=
2

3
 

 

2) Chernoff bound 

Pr (𝑋 > (1 +
1

2
) 𝜇) <

(

 
 𝑒

1
2

(
3
2
)

3
2

)

 
 

𝑛
2

< (0.95)𝑛 

 

 

All of this is saying, instead of using only Markov, here we will have a much tighter bound (for 𝑛 → ∞ 
the probability goes to 0 or approximates to 0 really fast), that’s why it’s this powerful. Here, we 
passed from a constant probability to an exponential probability. 

12.2 CHERNOFF BOUND VARIANTS 
 
Consider the following variants of Chernoff bounds (weaker but easier to state and to use): 

1)   Pr(𝑋 < (1 − 𝛿)𝜇) < 𝑒−
𝜇𝛿2

2 , 0 < 𝛿 ≤ 1 (Lower tail bound) 

2)    Pr(𝑋 > (1 + 𝛿)𝜇) < 𝑒−
𝜇𝛿2

2 , 0 < 𝛿 ≤ 2𝑒 − 1 (Upper tail bound) 

Quoting the professor: you do not have learn by heart, because during an exam they are given by the 
professor, we do not need to learn them. So, also quoting older Italian notes: in the exam all 3 variants 
(the normal one and these ones) + Markov’s lemma will be given. Just check the MEGA in case. 

12.3 ANALYSIS IN HIGH PROBABILITY OF RANDOMIZED QUICKSORT  
 

(Further readings for this one: here) 
 

As an example of application of Chernoff bounds, we do the analysis of Randomized Quicksort, in 
which we remember the pivot is chosen at random (possibly, not very far from the median) and 
partitions the array around the pivot. This random selection of pivots ensures that the algorithm 
performs well on average, even though the worst-case complexity can be poor. This is a LAS VEGAS 
algorithm, since it always sorts. 

  

https://awards.acm.org/about/2023-turing
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𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑅𝑎𝑛𝑑𝑄𝑢𝑖𝑐𝑘𝑆𝑜𝑟𝑡(𝑆)     |𝑆| = 𝑛, all distinct 

 if |𝑆| ≤ 1 then return ⟨𝑆⟩ 

 𝑝 = 𝑅𝐴𝑁𝐷𝑂𝑀(𝑆) // 𝑝𝑖𝑐𝑘 𝑎 “𝑝𝑖𝑣𝑜𝑡” 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑎𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑟𝑜𝑚 𝑆 

 𝑆1 = {𝑥 ∈ 𝑆 𝑠. 𝑡. 𝑥 < 𝑝}  // 𝑂(𝑛) 𝑡𝑖𝑚𝑒 

 𝑆2 = {𝑥 ∈ 𝑆 𝑠. 𝑡. 𝑥 > 𝑝}  // 𝑂(𝑛) 𝑡𝑖𝑚𝑒 

 𝑍1 = 𝑅𝑎𝑛𝑑𝑄𝑢𝑖𝑐𝑘𝑆𝑜𝑟𝑡(𝑆1) 

 𝑍2 = 𝑅𝑎𝑛𝑑𝑄𝑢𝑖𝑐𝑘𝑆𝑜𝑟𝑡(𝑆2) 

 return ⟨𝑍1, 𝑝, 𝑍2⟩ 

The complexity of 𝑅𝑎𝑛𝑑𝑄𝑢𝑖𝑐𝑘𝑆𝑜𝑟𝑡 depends on how well the pivot divides the array into two parts. If 
the pivot is close to the median, the partitions will be well-balanced, leading to efficient sorting. 

Suppose 𝑝 is always the median of 𝑆; then 

𝑇𝑅𝑄𝑆(𝑛) = {
2𝑇𝑅𝑄𝑆 (

𝑛

2
) + 𝑂(𝑛), 𝑛 > 1

0,                                         𝑛 ≤ 1
 

 

 

 
 

So, basically: 

- There are 𝑛 nodes (excluding leaves associated to ∅) ⇒ ≤ 𝑛 paths root-leaf 
- We will show these paths are not so long; using any method (Master theorem or whatever), we 

get the same height of the tree 

𝑇𝑅𝑄𝑆(𝑛) =
𝑀𝑎𝑠𝑡𝑒𝑟 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑂(𝑛 log(𝑛)) 

However, 𝑝 is the median with probability 1
𝑛

, which is very low. 

(Can we find the median in linear time? Yes, deterministically ⇒ deterministic QS can be done in 
𝑂(𝑛𝑙𝑜𝑔(𝑛), but the algorithm is very complicated, and the hidden constant (from Big O notation) is 
very high, thus inefficient in practice).  

But do we really want exactly the median?  

Intuition: if the sizes of 𝑆1 and 𝑆2 are “not too unbalanced”, we should be good. Fortunately, we don’t 
really need that the random choice hits always the median. We assume the pivot splits the array such 
that the sizes of the partitions are not too unbalanced. 
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Let’s try anyway with a loose request for the approximation: 

{
|𝑆1| ≤

3

4
𝑛

|𝑆2| ≤
3

4
𝑛

 

Conversely, note that it holds also, |𝑆1| ≥
𝑛

4
, |𝑆2| ≥

𝑛

4
. 

That is, the pivot 𝑝 chosen from: 

 

 

Can this be considered good enough for us? 

Let’s assume we always choose the pivot in between this range. This can be easily seen via a 
recursion tree. We want to show that the depth of the recursion tree is 𝑂(log(𝑛)) with high probability. 
This means that the height of the tree, representing the number of recursive calls from root to leaf, is 
logarithmic in the size of the input in the worst case:  

 

 

 

 
 

What is going on here? Every choice of the algorithm splits the size in at most 3
4
𝑛, given the chance of 

an unlucky choice, given the subtrees can be unbalanced and the subinstances can be at most that. 
The generic event 𝐸 can be characterized as the “good choice” of the pivot between all the 
statistically possible choices. So, he good pivot is chosen such that the size of the partitions are at 

most 3
4
𝑛. 

So, calculating the cost of the algorithm: 

- Total work at each level is mostly linear, so ≤ 𝑐 ∗ 𝑛 

- Depth of the recursion tree = min {𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑖 𝑠. 𝑡. (3
4
)
𝑖
𝑛 ≤ 1} = ⌈log4

3

(𝑛)⌉ = 𝑂(log(𝑛)) 

So, continuing: (3
4
)
𝑖
𝑛 ≤ 1 ⇔ (

3

4
)
𝑖
≤
1

𝑛
⇔ (

4

3
)
𝑖
≥ 𝑛 ⇔ log4

3

(
4

3
)
𝑖
≥ log4

3

(𝑛) ⇔ 𝑖 ≥ log4
3

(𝑛) 
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 ⇒ 𝑇𝑅𝑄𝑆(𝑛) = 𝑂(𝑛 𝑙𝑜𝑔(𝑛)) 

By looking at the recursion tree, if such a pivot is always chosen, all the root-leaf paths are no longer 

that the factor obtained (specifically, log4
3

(𝑛)), given after 𝑖 success, in 𝑆 we have ≤ (3
4
)
𝑖
𝑛.  

That is, it’s not necessary that 𝑆1 and 𝑆2 are perfectly balanced.  Specifically, we have ≃ 𝑛

2
  “good” 

choices for the pivot 𝑝. 

12.3.1 Analysis 

 
Hope: depth of the recursion tree = 𝑂(log(𝑛)) w.h.p. That is, all the ≤
𝑛 distinct root-leaf paths have 𝑂(log(𝑛)) length w.h.p. Let’s call the 
event 𝐸 = “lucky choice of the pivot”, that is, pivot chosen between 

the (𝑛
4
+ 1)-th order statistic and the (3

4
𝑛)-th order statistic – so, a 

range around the median point, possibly large. This means the 2 

subinstances have size ≤ 3

4
𝑛.  

(Unrelated, but good to see the point here) 

Quoting Wikipedia, we have that In statistics, the 𝑘𝑡ℎ order statistic of 
a statistical sample is equal to its 𝑘𝑡ℎ -smallest value. 

Pr("𝑙𝑢𝑐𝑘𝑦 𝑐ℎ𝑜𝑖𝑐𝑒") =

3
4𝑛 − (

𝑛
4 + 1) + 1

𝑛
=
1

2
 

If I always have success, the paths are no longer than log4
3

𝑛 (because |𝑆| after the successes is ≤

(
3

4
)
𝑖
𝑛). Fix one root-leaf path 𝑃 and the following lemma says, “with h.p. the path chosen in short”; 

specifically shorter than log (𝑛)”. 

Lemma: Pr (|𝑃| > 𝑎 ∗ log4
3

(𝑛)) <
1

𝑛3
 

 

We are trying to find the probability there is at least one big path around the mid value.  

If this is true, we’re done, applying the very frequent/very famous following lemma. 

Lemma (Union bound): for any random events 𝐸1, …𝐸𝐾: 

Pr(𝐸1 ∪ 𝐸2 ∪ …∪ 𝐸𝑘) ≤ Pr(𝐸1) + Pr(𝐸2) + ⋯+ Pr (𝐸𝑘) 

(the probability of one of the events happening, given they are disjointed, is no more than the original 
sum). Consider the picture: given all independent events, the probability of the union is no more than 
the union of all cases. 
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In the context of analyzing randomized algorithms with Chernoff bounds, the union bound helps us 
manage the probability that any one of multiple bad events occurs. This way, we can ensure that our 
randomized algorithms perform well not just in isolated instances, but across the entire set of 
possible outcomes. 

So, we want to prove the following: 

Pr (𝑎𝑙𝑙 𝑟𝑜𝑜𝑡 − 𝑙𝑒𝑎𝑓 𝑝𝑎𝑡ℎ𝑠 ℎ𝑎𝑣𝑒 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑎 ∗ log4
3
(𝑛)) ≥ 1 − Pr (∃ 𝑝𝑎𝑡ℎ > 𝑎 ∗ log4

3
(𝑛)) ≥ ⋯ 

If the lemma is true, it follows that: 

- Given the event 𝐸𝑖 = the path 𝑝𝑖  has length > 𝑎 ∗ log4
3

(𝑛): 

Pr (∃ 𝑝𝑎𝑡ℎ > 𝑎 ∗ log4
3
(𝑛)) = Pr (⋃𝐸𝑖) ≤

𝑢𝑛𝑖𝑜𝑛 𝑏𝑜𝑢𝑛𝑑

𝑛

𝑖=1

 

≤∑Pr(𝐸𝑖) <𝑙𝑒𝑚𝑚𝑎 𝑛 ∗
1

𝑛3
=
1

𝑛2

𝑛

𝑖=1

 

… ≥ 1 −
1

𝑛2
 

⇒ 𝑇𝑅𝑄𝑆(𝑛) = 𝑂(𝑛𝑙𝑜𝑔(𝑛)) w.h.p. (basically, all paths are short than the factor, so 1 − 1

𝑛2
) 

It remains to prove the lemma, so to prove that:  

Pr (|𝑃| > 𝑎 ∗ log4
3
(𝑛)) <

1

𝑛3
 

 

Specifically, in words, a fixed path has more than 𝑙, as follows: 

 

 

 

 

So in the course of pivot choices, about one out of two times a lucky choice is made. The intuition is 
that, on average, a path will be no more than twice as long as the shortest possible path. Along a root-

to-leaf path, every second node guarantees a 3
4

 reduction in the size of the set.  

This guarantees a logarithmic number of levels, corresponding to an 𝑛(log(𝑛)) algorithm with high 
probability, a with a pivot choice that can be realized in constant time. 
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The event 𝐸 can be characterized as “in the first 𝑙 = 𝑎 ∗ log4
3

(𝑛) nodes of 𝑃 there have been < log4
3

(𝑛) 

lucky choices”. We are studying this specific event: 

- 𝑋𝑖 , 1 ≤ 𝑖 ≤ 𝑙 = 𝑎 ∗ log4
3

(𝑛) 

- 𝑋𝑖 = 1 if at the 𝑖𝑡ℎ vertex of 𝑃 there is a lucky choice of the pivot 

- Pr(𝑋𝑖 = 1) =
1

2
 ∀𝑖 

- 𝑋𝑖  are independent 

We want the probability of 𝑃 (∑ 𝑋𝑖 < log4
3

(𝑛)𝑙
𝑖=1 ) to bound 𝑋 = ∑ 𝑋𝑖

𝑙
𝑖=1 . Given 𝑋 = ∑ 𝑋𝑖

𝑙
𝑖=1 , its 

expected value is as follows: 

𝜇 = 𝐸[𝑋] = 𝐸[∑𝑋𝑖] =∑𝐸[𝑋𝑖] =∑
1

2
=
𝑙

2
=
𝑎

2
log4

3

(𝑛)

𝑙

𝑖=1

𝑙

𝑖=1

𝑙

𝑖=1

 

Now, let’s apply the following Chernoff bound (the first): 

Pr(𝑋 < (1 − 𝛿)𝜇) < 𝑒
−𝜇𝛿2

2 , 0 < 𝛿 ≤ 1  

↓ 

(1 − 𝛿)𝜇 = log4
3

(𝑛) 

(1 − 𝛿)
𝑎

2
log4

3

(𝑛) = log4
3

(𝑛) 

One possible choice is 𝑎 = 8, 𝛿 = 3

4
, obtained using symbolic analysis and finding the right values to 

respect the conditions above: 
 

 

We then apply the Chernoff lemma as follows: 

Pr (𝑋 < log4
3

(𝑛)) < 𝑒
−
8
4
∗𝑙𝑜𝑔4

3

(𝑛)∗
9
16 

= 𝑒
−
8
4
∗𝑙𝑜𝑔4

3

(𝑛)∗
9
8 

< 𝑒
−𝑙𝑜𝑔4

3

(𝑛)
 

= 𝑒
−
𝑙𝑛(𝑛)

𝑙𝑛(
4
3
) 

= (𝑒−𝑙𝑛(𝑛))

1

ln (
4
3
) 

= (
1

𝑛
)

1

ln(
4
3
)
≃3,47

 

< (
1

𝑛
)
3,47

= (
1

𝑛3,47
) ≃

1

𝑛3
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Or equivalently (left in Italian since it’s mostly a detailed analysis): 

 

 

 

 

 

 

 

 

Hence, in high probability, the randomized quicksort recursion tree has a logarithmic number of 
levels, and each level contributes to the overall work 𝑂(𝑛), so in high probability quicksort performs in 
𝑂(𝑛(log(𝑛))) time. 

For randomized algorithms, the analysis is decomposed into a series of events that may or may not 
happen, and then studies the good (or bad) event as a function of these individual elementary events 
that capture the various choices made by the algorithm.  

Deterministic analysis is similar; you break down the algorithm into elementary steps and find what 
the worst-case sequence is. Rather than the worst case, here one studies the probability of that 
happening, decomposing the entire computation into a series of events to be composed of each other 
in a way that uses the known bounds. 

 

(This year, the program ends here – next classes will be only exercises dedicated for the exam. 
Information for you to be organized upfront – since no classes were skipped, here this end of program 

is Half of May, so there’s time to prepare yourself). 
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12.4 APPLICATIONS OF CHERNOFF BOUNDS 
 
(Note: these two lessons the professor will say “program is over, and we will do lessons dedicated to 

exercises for the exam”. Point is, this is not entirely true, since these are more of use cases which 
effectively appeared inside of exams (see here) but is just the same script year by year. 

12.4.1 Exit polls 

 
The first to be analyzed here is exit polls: approximate the percentage (%) of voters that in an election 
voted for one of the available options, without counting all votes. More generally, as noted here, this 
can be applied to sampling/polling cases.  

How does it work? 

- Some votes are drawn at random, which will go to represent the approximate solution 
- The idea is that enough votes should be drawn 

o Which assures me the goodness of the solution w.h.p. 

 

 

 

One urn 𝑈 (container) with 𝑛 balls (which represent parties), both white and black. 

Goal: approximate the true value of white balls 𝛼 ∗ 𝑛.  

Assumption: we know that there are 𝛼𝑚𝑖𝑛 ∗ 𝑛 white balls (we have to assume it for certain, because it 
is difficult to approximate w.h.p. a very improbable event). That is why, on small parties, we get the % 
that is given to exit polls much more wrong. 

To determine 𝛼:  

- With a deterministic algorithm (exact), the complexity is Ω(𝑛) 
- With a randomized approximated algorithm, the complexity if 𝑂(log(𝑛))  

o And that’s why we can do exit polls! 

The algorithm will output a quantity (estimate) 𝛽 such that Pr (|𝛽−𝛼|
𝛼

> 𝜖) is very low (and so to 

determine the number of samples 𝑘 to ensure estimate 𝛽 is close to 𝛼 with high probability): 

- |𝛽−𝛼|

𝛼
 is the relative error – measure of difference between approximate value and true value 

- 𝜖 is the confidence threshold – predetermined probability level defining the minimum 
acceptable likelihood for the event to be considered significant or true 

o an example of very low value is e.g., < 1

𝑛2
. 

Note: it’s a randomized approximation scheme. The smaller 𝜖 is, the longer it will take the algorithm, 
because it increases the number of extractions that will be necessary to do. 

  

https://www.cs.princeton.edu/courses/archive/fall09/cos521/Handouts/probabilityandcomputing.pdf
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𝐴𝑃𝑃𝑅𝑂𝑋𝐼𝑀𝐴𝑇𝐸_𝛼 (𝑈, 𝜖, 𝛼𝑚𝑖𝑛) 

 𝑛 = |𝑈| // 𝑏𝑎𝑙𝑙𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 

 𝑘 = 𝑓(𝑛, 𝜖, 𝛼𝑚𝑖𝑛) // 𝑛° 𝑜𝑓 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑏𝑒 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 

 𝑥 = 0 

 repeat 𝑘 𝑡𝑖𝑚𝑒𝑠 

  𝑝 = 𝑅𝐴𝑁𝐷𝑂𝑀(𝑈) 

  if 𝑐𝑜𝑙𝑜𝑟(𝑝) = 𝑤ℎ𝑖𝑡𝑒 then 𝑥 + + 

 return
𝑥

𝑘
 

  ↓ 

𝛽 (value which approximates 𝛼)   

Note that these are extractions with reintroduction, whereas in exit polls the extractions are without 
reintroduction. This only improves the approximation of the algorithm because the extractions without 
reintroduction are always worse because they have greater variance. 

So, to summarize:  

- Use Chernoff bounds to determine the number of extractions 𝑘 needed to guarantee that the 

estimate 𝑥
𝑘

 is close to 𝑝 with high probability 

Complexity is (very fast dependent on the number of samples) → 𝑂(𝑘).  

Main question: “What’s the value of 𝑘 that guarantees the high probability”? 

- 𝑘 indicator random variables 
- 𝑋𝑖 = 1 if the 𝑖𝑡ℎ extracted ball is white (of course, 0 otherwise) 
- Pr(𝑋𝑖 = 1) = 𝛼 (the parameter is not known, fraction voting basically) 
- 𝑋 = ∑ 𝑋𝑖

𝑘
𝑖=1 , which is the n° of extracted white balls (estimate) 

- 𝜇 = 𝐸[𝑋] = 𝐸[∑ 𝑋𝑖]
𝑘
𝑖=1 = ∑ 𝐸[𝑋𝑖] = 𝑘𝛼

𝑘
𝑖=1  

Event: (written in the form of approximate Chernoff bound - represents the case where our estimate 𝛽 

(which is 𝑥
𝑘

) differs from the true value 𝛼 by more than a relative error 𝜖. 

"
|𝛽 − 𝛼|

𝛼
> 𝜖" = "

|
𝑋
𝑘
− 𝛼|

𝛼
> 𝜖" 

= "
|𝑥 − 𝛼𝑘|

𝛼𝑘
> 𝜖" 

After isolating the expected value, we’ll use this Chernoff bound:  

Pr(|𝑋 − 𝜇| > 𝜖𝜇) < 2𝑒
−𝜇𝜖
2 , 0 < 𝜖 ≤ 1 
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Issue: 𝛼 is unknown ⇒ use 𝛼𝑚𝑖𝑛 instead (so, it’s a lower bound for 𝛼 and so ⇒ use 𝑎𝑚𝑖𝑛 ≤ 𝛼).  

2𝑒
−𝑘𝛼𝜖2

2 ≤ 2𝑒
−𝑘𝛼𝑚𝑖𝑛𝜖

2

2 → 𝑘 =
2

𝑛2
 

(the previous has to become < 1

𝑛
).  

Then, algebraic operations and solving from 𝑘: 

−
𝑘𝛼𝑚𝑖𝑛𝜖

2

2
= − ln(𝑛2) → 𝑒−ln(𝑛

2) =
1

𝑛2
⇒ 𝑘 =

2 ln(𝑛2)

𝛼𝑚𝑖𝑛𝜖
2
=
4 ln(𝑛)

𝛼𝑚𝑖𝑛𝜖
2
𝑂 (
log(𝑛)

𝜖2
) 

2𝑒
−𝑘𝛼𝜖2

2 ≤ 2𝑒
−𝑘𝛼𝑚𝑖𝑛𝜖

2

2 = 2𝑒−ln(𝑛
2) =

2

𝑛2
<
1

𝑛
   (𝑓𝑜𝑟 𝑛 > 2) 

(if 𝑘 ↑ I get 1
𝑛𝑑

 with 𝑑 > 1; here, 𝑘 is chosen so to remove parameters different from 𝑛 to add then a 

log(𝑛)𝜔 so to obtain something like 𝑒−log(𝑛
𝜔), which is equal to 𝑛−𝜔 = 1

𝑛𝜔
) 

So, we exponentially decreased the complexity of the deterministic algorithm maintaining a relative 
margin of error which w.h.p. is very small. 

12.4.2 Load balancing 

 
The problem is also called “balls-and-bins” and it can be described as follows: 

- 𝑛 servers 
- 𝑛 jobs/requests, that arrive one by one  

There are some issues however: 

- Distributed environment, so no central control 
- Limited information, where we don’t know the servers’ loads (latency) 

Goal: minimize max load over the 𝑛 servers (side note: as before, this can be found on page 7 here). 

Simple algorithm: assign each job to a server chosen uniformly at random. 

- This is definitely more efficient than maintaining some state and/or statistics, which might 
cause slight delays – the policy is simple and lightweight 

Does it work? The general model to be followed here is the “balls-and-bins” – classic CS problem of 
assigning 𝑚 balls into 𝑛 boxes/bins considering problem like this one or even hashing and fair cake-
cutting (yeah, that’s a thing) – so: 

- Consider a fixed process (which in RQS meant considering a fixed root-leaf path) then make 
the analysis for that single element 

- Apply a union bound (bound on the union probability of events) to obtain the probability 
whatever processor having a high load is very low 

Theorem (famous result): if 𝑛 inputs are assigned uniformly at random to 𝑛 servers, then with 

probability ≥ 1 − 1

𝑛
 every server has ≤ 3 ln(𝑛)

ln(𝑙𝑛(𝑛))
 requests, assuming sufficiently high 𝑛.  

https://www.cs.princeton.edu/courses/archive/fall09/cos521/Handouts/probabilityandcomputing.pdf
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Side note: Given I am not content with “famous result” now knowing where this comes from, it’s from 
the balls and bins model but also a problem called “coupon’s collector”, which you can see here. 

Proof: 
- Consider a fixed server 

o 𝑋𝑖 = 1 if the 𝑖𝑡ℎ job/request gets assigned to that server (one for every request) 

o Pr(𝑋𝑖 = 1) =
1

𝑛
 

o 𝑋𝑖’s are independent 
o 𝑋 = ∑ 𝑋𝑖

𝑛
𝑖=1 = load of that server (quality to be analyzed) 

o 𝜇 = 𝐸[𝑋] = ∑ 𝐸[𝑋𝑖] = 𝑛 ∗
1

𝑛
= 1𝑛

𝑖=1  = average number of requests of a server 

Now, we will study 𝑋 in high probability. We’ll use the following (Chernoff lemma in original version, so 
the strongest version. If we apply the weaker ones, we obtain only a single 𝑙𝑛 factor, this does a tight 
approximation): 

Pr(𝑋 > (1 + 𝛿)𝜇) < (
(𝑒𝛿)

(1 + 𝛿)1+𝛿
 )

𝜇

  

      ↓ 

      3 ln(𝑛)

ln(ln(𝑛))
⇒ 𝛿 =

3 ln(𝑛)

ln(ln(𝑛))
− 1 

What we want to claim exactly is that the probability of a server exceeding the specified load is at 

most 1
𝑛2

. Here, we apply the substitutions necessary for Chernoff bounds, using 

logarithmic/exponential properties:  
𝑒δ

(1 + δ)(1+δ)
≤?

1

𝑛2
 

⇕ (take logs of both sides) 

𝛿 − (1 + 𝛿) ln(1 + 𝛿) ≤ −2 ln(𝑛) 

⇕ 

3 ln(𝑛)

ln(ln(𝑛))
− 1 −

3 ln(𝑛)

ln(ln(𝑛))
ln (

3 ln(𝑛)

ln(ln(𝑛))
) ≤ −2ln (𝑛)  

⇕ 

3 ln(𝑛)

ln(ln(𝑛))
− 1 −

3

ln(𝑙𝑛(𝑛))
(ln(3) + ln(ln(𝑛)) − ln(𝑙𝑛(𝑙𝑛(𝑛)))) ≤ −2ln (𝑛) 

⇕ 

3 ln(𝑛)

ln(ln(𝑛))
−

1

ln(𝑛)
−

3

ln(𝑙𝑛(𝑛))
− 3 +

3 ln(ln(ln(𝑛)))

ln(𝑙𝑛(𝑛))
≤ −2 

⇕  𝑛 sufficiently high 

𝑂(1) + 𝑂(1) + 𝑂(1) − 3 + 𝑂(1) ≤ −2 ✔ 

(In words: the load is at most is definitely the quantity in high probability, so < 1

𝑛2
) 

https://sites.math.rutgers.edu/~sc2518/21W170E3/Coupon%20collector.pdf
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Now, let’s apply the union bound (which allows to sum up for all the probabilities for every server and 
checks the probability of any server being overloaded is very low) to see that the same is true for every 
server simultaneously: 

𝐸𝑖 = the 𝑖𝑡ℎ server gets more than 3 ln
(𝑛)

ln(ln(𝑛))
 requests 

Pr (∃ 𝑠𝑒𝑟𝑣𝑒𝑟 𝑡ℎ𝑎𝑡 𝑔𝑒𝑡𝑠 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑡 
3 ln(𝑛)

ln(ln(𝑛))
 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠) = Pr (⋃𝐸𝑖) ≤𝑢𝑛𝑖𝑜𝑛 𝑏𝑜𝑢𝑛𝑑 ∑Pr(𝐸𝑖) = 𝑛 ∗

1

𝑛2
=
1

𝑛

𝑛

𝑖=1

𝑛

𝑖=1

 

In other words, the probability that no server gets more than 3 ln
(𝑛)

ln(ln(𝑛))
 jobs is > 1 − 1

𝑛
. 

(Consider in past notes, 3 ln
(𝑛)

ln(ln(𝑛))
= 𝜃 (

log(𝑛)

log(𝑙𝑜𝑔(𝑛))
)) 

Two notes in the end: 

- It can be shown to be tight: some server gets Ω( log(𝑛)

log(𝑙𝑜𝑔(𝑛))
) requests)  

- Improved algorithm: choose 2 servers at random and assign the request to the least loaded → 
max load drops to 𝑂(log (log(𝑛))! 

The first one was present in Lecture 23 of 2022-2023, for the sake of completeness (and craziness, I’d 
say), I’ll add it here anyway. This uses the original version of Chernoff lemma: 

Pr(𝑋 > (1 + 𝛿)𝜇) < (
(𝑒𝛿)

(1 + 𝛿)1+𝛿
 )

𝜇

  

call (1 + 𝛿) = 𝑐, then: 

Pr(𝑋 > 𝑐) <
𝑒𝑐−1

𝑐
< (

𝑒

𝑐
)
𝑐

 

𝑐 = 𝑒𝛾(𝑛) → (
𝑒

𝑐
)
𝑐

= (
1

𝛾(𝑛)
)
𝑒𝛾(𝑛)

< (
1

𝛾(𝑛)
)
2𝛾(𝑛)

 

It holds that 𝛾(𝑛)𝛾(𝑛) = 𝑛 ⇔ 𝛾(𝑛) = 𝜃 (
log(𝑛)

log(log(𝑛))
), then: 

Pr(𝑋 > 𝜃 (
log(𝑛)

log(log(𝑛))
)) < 𝛾(𝑛)−2𝛾(𝑛) = (𝛾(𝑛)𝛾(𝑛))

−2
= 𝑛−2 =

1

𝑛2
  

Applying the union bound: 

𝐸𝑖 = the 𝑖𝑡ℎ server gets more than 𝜃 ( log(𝑛)

log(log(𝑛))
) jobs 

Pr (∃ 𝑠𝑒𝑟𝑣𝑒𝑟 𝑡ℎ𝑎𝑡 𝑔𝑒𝑡𝑠 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 𝜃 (
log(𝑛)

log(log(𝑛))
)  𝑗𝑜𝑏𝑠) = Pr (⋃𝐸𝑖

𝑛

𝑖=1

) ≤𝑈𝑛𝑖𝑜𝑛 𝐵𝑜𝑢𝑛𝑑  ∑Pr(𝐸𝑖)

𝑛

𝑖=1

  

= 𝑛 ∗
1

𝑛2
=
1

𝑛
 

In other words, the probability that no server gets more than 3 ln
(𝑛)

ln(ln(𝑛))
 jobs is > 1 − 1

𝑛
. 
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13 LAST LESSON - EXERCISES 

(This lesson represents an example of exercises for the exam; I suggest to just reference to what is 
present here. Delving into past material, he proposed the same algorithm every year up to 22/23 but 
this year, so 23/24, he actually showed something different. For the sake of completeness, I showed 
here also the previous years example of exam exercise, present since 19/20, first year of this course) 

This is the last class of the course. On the exam itself: 

- Written test → 2 hours 
- 2 parts 

o Theory questions (to verify that you know the program) 
▪ 3 theory questions (∼ 4 points each) 

o Problem solving (you must also to be able to solve new problems) 
▪ 2 problems (∼ 10 points each) 

- See Moodle for some examples (last year first exams and generic exercises) 

13.1 ALTERNATIVE 2-APPROX ALGORITHM FOR VERTEX COVER 
 
Exercise 

Consider the following algorithm for Vertex Cover: 

- run DFS from an arbitrary vertex of 𝐺 
- return all the non-leaf vertices of the DFS tree 

1) Show that this algorithm returns a Vertex Cover 

2) Show that this algorithm is a 2-approx algorithm for Vertex Cover (Hint: show a large enough 
matching in the DFS tree) 

3) Show a lower bound of 2 to the approximation factor of this algorithm 

Solution 

(Obviously, every vertex is covered. The question is: “Am I really covering all of the edges?”. Basically, 
no edge can be in between of the two leaves)  

1) The parents of the leaves cover all the edges left uncovered by the leaves of the DFS tree.  

2) Let’s help us with a picture and depict the DFS tree like the following. Let’s try 
to get some large cover 𝑉′. We try to find some matching 𝑀 taking all the 
vertices I can possibly get.  

This is done level by level, adding as many edges as possible. This allows to 
construct a relatively large matching inside of the DFS tree. The matching can be 
considered maximal since it cannot be extended.  
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Let 𝑟 be the root, choose one child 𝑣 and add (𝑟, 𝑢) to the matching 𝑀. Then, for every level 𝑖 ≥ 1 
consider all vertices 𝑣 not endpoints of any edge of 𝑀; choose a child 𝑢 and add (𝑣, 𝑢) to 𝑀. Then, 
repeat this process up to the leaves.  

a) Upper bound to the cost of 𝑉′ (which is our solution, greedy choice made by us) 

By construction, 𝑀 matches all the vertices of 𝑉′ and since each of such edges has at most 2 
endpoints in 𝑉′, we can write: 

|𝑉′| ≤ 2|𝑀| 

b) Lower bound to the cost of 𝑉∗ = 𝑂𝑃𝑇 (which is the optimal solution, selected by the algorithm: VC 
with min amount of vertices) 

∀ matching 𝑀 of 𝐺, |𝑉∗| ≥ |𝑀| (size of 𝑉∗ is at least the size of 𝑀).  

(this happens because if 𝑀 is a matching  ⇒ in any vertex cover, in particular 𝑉∗ there must be ≥ 1 
vertex ∀ edge of 𝑀 – seen before in this course) 

Putting these inequalities together, we have: 

⇒ |𝑉′| ≤ 2|𝑀| ≤ 2|𝑉∗| 

3) Show that the 2-factor is tight.  

Consider a graph of 3 vertices. You run the DFS from the top vertex. Then, 𝑉′ is the one which chooses 
two vertices, but 𝑂𝑃𝑇 (𝑉∗) is one. 

 

 

 

 

A more general example is the star graph, having DFS starting from a leaf.  
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13.2 SINGLE-LINKAGE CLUSTERING 
 
We define the clustering as follows: given a set 𝑋 of 𝑛 data points, partition them into “coherent 
groups” (called clusters) of “similar points” (basically, subsets of similar points).  

We define a similarity function𝑓 as follows: it assigns to each pairs of data points a real number that 
specifies their “similarity” (takes in input two points and tells how similar they are). Consider the 
following: the smallest 𝑓 = most similar points.  

Goal: a 𝑘 −clustering = partition data points into 𝑘 non-empty clusters.  

Single-linkage clustering: at the beginning, every data point is in its own cluster; then, successively 
merge the two clusters containing the most similar pair of points belonging to different clusters, until 
𝑘 clusters remain.  

Exercise: Give a fast implementation of single-linkage clustering. 

Idea: Hey, this is Kruskal’s algorithm (stopped early) – in class, people had the intuition of using Union-
Find sets, so to merge progressively clusters using that. This is the right way to think about it. 

1) Define a complete graph 𝐺 = (𝑋, 𝐸) with a vertex set 𝑋 and one edge (𝑥, 𝑦) ∈ 𝐸 of weight 𝑓(𝑥, 𝑦) for 
each pair of vertices 𝑥, 𝑦 ∈ 𝑋.  

2) Run Kruskal’s algorithm on 𝐺 until the solution 𝑇 contains 𝑛 − 𝑘 edges (or, equivalently, until 𝑘 
connected components remain). 

3) Compute the connected components of (𝑋, 𝑇) and return the corresponding partition of 𝑋 

Complexity: 𝑂(𝑛2 log(𝑛))  

13.3 MAXIMAL MATCHING 
 
Now, I will consider here for notes completion the approximation algorithm that was done in other 
years (basically each year since 2020-2021 up to 2022-2023, also found in existing video-lessons).  

Exercise (matching – maximal/maximum matching) 

Given a graph 𝐺 = (𝑉, 𝐸), recall that a matching 𝑀 ⊆ 𝐸 is a subset of edges that do not share vertices. 
We want to compute a matching of maximum size (that is, containing as many edges as possible). 

There exist polynomial-time algorithms, but those are slow/complicated. Consider the following 
simple algorithm: 

𝐺𝑅𝐸𝐸𝐷𝑌_𝑀𝐴𝑇𝐶𝐻𝐼𝑁𝐺(𝐺)  

 𝑚 = |𝐸| 

𝑀 = ∅  

𝑙𝑒𝑡 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑚}  

for 𝑖 = 1 𝑡𝑜 𝑚 do:  
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if ∀𝑒 ∈ 𝑀 𝑒 ∩ 𝑒𝑖 = ∅ then 

  𝑀 = 𝑀 ∪ {𝑒𝑖} 

 return 𝑀 

Observation: this algorithm returns a maximal (≠ maximum) matching → it can’t be augmented 

1) Give a graph 𝐺 for which 𝐺𝑅𝐸𝐸𝐷𝑌_𝑀𝐴𝑇𝐶𝐻𝐼𝑁𝐺 returns a solution with half the edges of an optimal 
solution. The following is an example (build it as small as possible). 

Basically, it’s asking for a tight approximation, which is for the maximization problem. So, we’d have 

here |𝑀
∗|

|𝑀′|
= 2. 

 

 

 

 

2) Prove that 𝐺𝑅𝐸𝐸𝐷𝑌_𝑀𝐴𝑇𝐶𝐻𝐼𝑁𝐺 is a 2-approximation algorithm (Hint: reason by contradiction – in 
past years when it was proposed in the Italian version of this course, it says “reason by contradiction 
starting from the hypothesis the matching returned by the algorithm has less the the half of the edges 
of the maximum cardinality).  

Observe 𝐺𝑅𝐸𝐸𝐷𝑌_𝑀𝐴𝑇𝐶𝐻𝐼𝑁𝐺 returns a maximal matching: infact, ∀𝑒 ∈ 𝑀,𝑀 ∪ {𝑒} is not a matching 
(otherwise, it would have been added to 𝑀). The algorithm continues to add more edges; the 
contradiction arises from the fact the algorithm has few edges and so the algorithm has not many 
edges to build a maximal matching and this is absurd, since is true by construction.  

 

 

 

 

 

Clearly, |𝑀| ≤ |𝑀∗| (edges are less than the optimal solution). We need to show |𝑀| ≥ |𝑀∗|

2
. 

 

 

Suppose, by contradiction, that |𝑀| < |𝑀∗|

2
 edges. So, the edges of 𝑀 cover at most 2|𝑀| < |𝑀∗| 

vertices ⇒ ∃ edge of 𝑀∗ that does not cover any vertex covered by edges of 𝑀 (without intersection 
with 𝑀 edges) ⇒ that edge(s) can be added to 𝑀, we call obtain a matching again: contradiction, given 
𝑀 is a maximal matching.  
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14 EXAMS AND OLDER EXERCISES 

In this section, all exams available (at the time of this writing) will be discussed with possible solutions 
+ some additional exercises found within past editions of the course, which can be further helpful. 

Honest advice: his “problem solving” part is more than enough covered knowing the theory and his 
exercises very well/perfectly since, as you will see, he will only ask variants of things done or showed 
exactly in that way in the theory like the question and keep an eye to hints. Do not look anywhere else 
for this exam and waste your time (actually, very few exercises of CLRS for Problem Solving part can 

be helpful/served as inspiration here), apart from existing exercises and exams.  

14.1 CHERNOFF BOUNDS AND HOW TO USE THEM 
 
Chernoff Bounds are a set of powerful techniques used to provide tight bounds on the tail 
probabilities of sums of independent random variables.  

- They are particularly useful for assessing the likelihood that the sum deviates significantly 
from its expected value 

- Unlike simpler bounds like Markov's, Chernoff bounds take advantage of the distribution's 
specific characteristics to offer sharper estimates, especially useful for understanding the 
decay of tail probabilities exponentially fast 

Consider the following footprint exercise: 

What is important in this set of exercises is the set of following steps (always like this): 

- Characterize the event 𝑋𝑖  (dependent on the type of problem you are dealing with) 
o And find the probability of success 

- Characterize the expected value 𝜇 
- Use it to find 𝛿 
- Apply the bound given by the exercise 

Consider we are usually bounding a precise value: apart from some strange cases, normally you have 
to get exactly the number given by the exercise. 

So, here, we have to first consider 𝑋𝑖. We know they are independent. Now, we simply need to find the 

expected value. We already have here the probabilty of success given by Pr(𝑋𝑖 = 1) =
1

4𝑒
. This applies 

for all𝑛 events since they are independent so: 
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𝜇 = 𝐸[𝑋] = 𝐸[∑𝐸[𝑋𝑖] = 𝑛 ∗
1

4𝑒
=
𝑛

4𝑒

𝑛

𝑖=1

 

Now, we find 𝛿 and this is done according to value we have to bound, given by the exercise or explicitly 

told here like 𝑛
2

: 

(1 + 𝛿)𝜇 =
𝑛

2
 

(1 + 𝛿)
𝑛

4𝑒
=
𝑛

2
 

(1 + 𝛿)
𝑛

2𝑒
= 𝑛 

(1 + 𝛿)𝑛 = 2𝑒(𝑛) 

(1 + 𝛿) = 2𝑒 

𝛿 = 2𝑒 − 1  

Now that we found 𝛿, let’s plug it in back in the original bound: 

Pr(1 + 𝛿) 𝜇 < (
(𝑒𝛿)

(1 + 𝛿)(1+𝛿)
)

𝜇

 

= Pr (𝑋 > (1 + 2𝑒 − 1)
𝑛

4𝑒
) ≤ 

≤ (
𝑒2𝑒−1

(1 + 2𝑒 − 1)(1+2𝑒−1)
)

𝑛
4𝑒

 

≤ (
𝑒2𝑒−1

(2𝑒)(2𝑒)
)

𝑛
4𝑒

 

≤ (
𝑒2𝑒 ∗ 𝑒−1

22𝑒 ∗ (𝑒2𝑒)
)

𝑛
4𝑒

 

≤ (
1

𝑒
)

𝑛
4𝑒
∗ (

1

22𝑒
)

𝑛
4𝑒

 

≤ (
1

𝑒−4𝑒
)
𝑛

∗ (
1

2
2𝑒
4𝑒

)

𝑛

 

≤ (
1

𝑒−4𝑒
)
𝑛

∗ (
1

2
1
2

)

𝑛

 

≤ (
1

𝑒−4𝑒
)
𝑛

∗ (
1

√2
)
𝑛

 

To infinity, it dominates the second factor, so we’d have ( 1
√2
)
𝑛
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14.2 EXAM OF 04-09-2024 

 

 

 

 

 

 

 

 

b) Kruskal: sort by weight in ascending order, then select edges: {𝑒, 𝑓}, {𝑒, 𝑑}, {𝑎, 𝑏}, {𝑑, 𝑐}, {𝑎, 𝑑} 

c) Prim: start from a source vertex then grow a spanning tree from there: 
{𝑎, 𝑏}, {𝑎, 𝑑}, {𝑑, 𝑒}, {𝑒, 𝑓}, {𝑐, 𝑑} 

Alternatively, a better graph here: 

 

 

 



162  Advanced Algorithms Simple (for real) 
 

Written by Gabriel R. 

 

 

 

 

Set cover is an optimization problem that models many problems requiring resources to be allocated. 
It aims to find the least number of subsets that cover some universal set.  

Its inputs are: 

- 𝐼 = (𝑋, 𝐹) = instance of the set covering problem 
- 𝑋 = set of elements of any kind, called “universe” 
- 𝐹 ⊆ {𝑆: 𝑆 ⊆ 𝑋} = 𝐵(𝑋) 

a. 𝐵 stands for “Boolean”: set of all subsets of 𝑋 

There is a constraint that needs to be always respected: ∀𝑥 ∈ 𝑋, ∃ 𝑆 ∈ 𝐹: 𝑥 ∈ 𝑆 i.e., “𝐹 covers 𝑋” 

Optimization problem: (smallest subset of 𝐹 having its members covering all 𝑋) → find 𝐹′ ⊆ 𝐹 s.t. 

3) 𝐹′ covers 𝑋 
4) min |𝐹′| 

Example: 

𝑋 = {1,2,3,4,5}  

𝐹 = {{1,2,3}, {2,4}, {3,4}, {4,5}}  

⇒ 𝐹∗ = {{1,2,3}, {4,5}} 

The greedy method works by picking at each stage, the set 𝑆 that covers the greatest number of 
remaining elements that are uncovered: 

- choose the subset that contains the largest number of uncovered elements 
- remove from 𝑋 those covered elements 
- repeat until 𝑋 = ∅ 

𝐴𝑝𝑝𝑟𝑜𝑥_𝑆𝑒𝑡_𝐶𝑜𝑣𝑒𝑟(𝑋, 𝐹)  

 𝑈 = 𝑋 

 𝐹′ = ∅ // 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

 while 𝑈 ≠ ∅: do 

// 𝑡𝑎𝑘𝑒 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝐹 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑎𝑠 𝑚𝑎𝑛𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑎𝑠 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒  

  𝑙𝑒𝑡 𝑆 ∈ 𝐹 = |𝑆 ∩ 𝑈| = max
𝑆′∈𝐹

{|𝑆′ ∩ 𝑈|} 

  𝑈 ← 𝑈 ∖ 𝑆 // 𝑢𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, 𝑟𝑒𝑚𝑜𝑣𝑖𝑛𝑔 𝑡ℎ𝑜𝑠𝑒 𝑓𝑟𝑜𝑚 𝑆 

  𝐹 ← 𝐹 ∖ {𝑆} // 𝑟𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 𝑠𝑒𝑡𝑠 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑖𝑛𝑠𝑖𝑑𝑒 𝑜𝑓 𝐹 
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  𝐹′ ← 𝐹′ ∪ {𝑆} 

 return 𝐹′ 

 

(a) 𝑂(𝑚|𝑓∗|) 

(b) 𝑂(𝑛3) 

(c) NP-hard 

(d) 𝑂(𝑛 ∗ 𝑚) 

 

The most similar problem is Set Cover; given a universe 𝑈 and a collection of subsets 𝑆1, 𝑆2, … 𝑆𝑛 of 𝑈, 
the goal is to find the smallest number of subsets such that every element in 𝑈 is covered by at least 
one of the selected subsets. A reference for this specific reduction can be also found here. 

To do the reduction: 

- Take an instance of Set Cover and use the same universe 𝑈 with subsets 𝑆1, 𝑆2, … 𝑆𝑛 for the 
maximum coverage problem 

Specifically: 

 

 

 

 

 

 

 

 

https://cs.stackexchange.com/questions/32659/is-the-maximum-coverage-variant-of-vertex-cover-also-np-hard


164  Advanced Algorithms Simple (for real) 
 

Written by Gabriel R. 

The reduction process would work as follows: 

- Use the universe 𝑈 from Set Cover as universe 𝑋 for Maximum Coverage (𝑋 = 𝑈) 
- For any given 𝑘 representing the number of subsets, use the same subsets 𝑆1, 𝑆2, … 𝑆𝑛, this is 

the size of the optimal solution for Set Cover and Maximum Coverage alike 
- If Maximum Coverage can be solved in poly-time for any 𝑘, by trying all possible 𝑘 from 1 to 

𝑚, we can determine the smallest 𝑘 such that the maximum coverage is |𝑈| 
- Evaluate Maximum Coverage for all possible values of 𝑘 from 1 to 𝑚 

To prove this is correct: 

- if Set Cover has a solution for some 𝑘, it means the 𝑘 subsets cover the entire universe 𝑈 and 
applying this to Maximum Coverage will yield full coverage of 𝑈 for the selected 𝑘, showing the 
maximum coverage is |𝑈|; infact, this ensures the optimal selection of the correct number of 
subsets so to achieve the correct solution with respect to the number of elements of 
Coverage, ensuring a good enough cover for size 𝑘 
 

- if Maximum Coverage can be solved efficiently for any 𝑘, this means we can iterate through the 
subsets 𝑘 = 1 to 𝑚 (where 𝑚 is the number of subsets). The smallest 𝑘 that results in 
Maximum Coverage equaling |𝑈| corresponds to the smallest 𝑘 solving Set Cover 
 

a. Since the problem itself is NP-Hard, the ability to solve it using MCP implies that MCP 
must also be NP-hard, since we can check and evaluate Maximum Coverage for each 
subset 𝑘 up to 𝑚 and this happens since ∀𝑘 up to 𝑚 we check if the coverage equals 
|𝑈| and take the smallest one 

This proof clearly shows how a polynomial-time solution to Maximum Coverage would enable a 
polynomial-time solution to Set Cover, establishing the NP-hardness of Maximum Coverage through 
reduction defined precisely. 

Exercise 2 (10 points)  - (not actually sure on the text, this was reconstructed) 

Part 1: 

Given a randomized Monte Carlo problem with complexity in the worst-case T(n) and failure 
probability ϵ∈(0,1), and a deterministic algorithm to check the correctness of the solution in constant 
time O(1), transform the Monte Carlo algorithm into a Las Vegas algorithm. 

Part 2: 

Prove that the complexity of the resulting Las Vegas algorithm is T(n) in the worst case. 
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1) 

Given: 

- A randomized Monte Carlo algorithm with worst-case complexity T(n) and failure probability ϵ∈(0,1). 

- A deterministic algorithm for verifying the correctness of the solution in constant time O(1). 

To transform the Monte Carlo algorithm into a Las Vegas algorithm: 

1. Run the Monte Carlo algorithm to obtain a solution. 

2. Use the deterministic verification algorithm to check the correctness of the solution. 

   - If the solution is correct, return the solution and terminate the algorithm. 

   - If the solution is incorrect, go back to step 1 and repeat the process. 

The resulting algorithm is a Las Vegas algorithm because it always returns a correct solution, albeit 
with a variable running time. 

2) 

Let's analyze the expected running time of the Las Vegas algorithm: 

- The probability of the Monte Carlo algorithm succeeding in a single iteration is (1 - ϵ). 

- The expected number of iterations until a correct solution is found is 1 / (1 - ϵ). 

  - This is because the number of iterations follows a geometric distribution with success probability (1 
- ϵ). 

Now, let's calculate the expected running time: 

- Each iteration of the Las Vegas algorithm consists of: 

  - Running the Monte Carlo algorithm, which takes T(n) time. 

  - Verifying the solution, which takes O(1) time. 

- The expected running time is the product of the expected number of iterations and the time per 
iteration: 

  - Expected running time = (1 / (1 - ϵ)) * (T(n) + O(1)) 

  - Simplifying the expression, we get: 

    - Expected running time = (1 / (1 - ϵ)) * T(n) + (1 / (1 - ϵ)) * O(1) 

Since ϵ is a constant (independent of n), (1 / (1 - ϵ)) is also a constant. Therefore: 

- (1 / (1 - ϵ)) * T(n) = Θ(T(n)) 

- (1 / (1 - ϵ)) * O(1) = O(1) 

The expected running time of the Las Vegas algorithm is Θ(T(n)) + O(1) = Θ(T(n)). 

Thus, we have proven that the complexity of the resulting Las Vegas algorithm is T(n), the same as the 
worst-case complexity of the original Monte Carlo algorithm. 



166  Advanced Algorithms Simple (for real) 
 

Written by Gabriel R. 

  



167  Advanced Algorithms Simple (for real) 
 

Written by Gabriel R. 

14.3 EXAM OF 21-08-2024 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Problem Definitions:  

- Hamiltonian Circuit (HC):  
o Input: An undirected graph G = (V, E)  
o Question: Does G contain a cycle that visits each vertex exactly once? 

-  Traveling Salesperson Problem (TSP):  
o Input: A complete weighted graph G' = (V', E') and a target cost k  
o Question: Is there a tour (cycle visiting all vertices once) with total cost ≤ k?  

The reduction would work this way: Given an instance of HC with graph G = (V, E), we construct an 
instance of TSP as follows: a) Let V' = V (same set of vertices) b) Create a complete graph G' = (V', E') 
where:  

• If (u, v) ∈ E, set weight w(u, v) = 1 

• If (u, v) ∉ E, set weight w(u, v) = 2 c) Set the target cost k = |V| 
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For the proof, we need to show that G has a Hamiltonian circuit if and only if G' has a tour with cost ≤ 
|V|. (⇒) If G has a Hamiltonian circuit:  

• This circuit uses |V| edges from E 

• In G', these edges all have weight 1 

• Therefore, there's a tour in G' with total cost |V| 

(⇐) If G' has a tour with cost ≤ |V|:  

• The tour must use exactly |V| edges (as it visits all vertices once) 

• For the cost to be ≤ |V|, all edges must have weight 1 

• Edges with weight 1 in G' correspond to edges in G 

• Therefore, this tour corresponds to a Hamiltonian circuit in G 

This is done in polynomial-time as reduction, since:  

• Creating G' requires checking each pair of vertices once: O(|V|²) 

• Setting edge weights is constant time per edge: O(1) 

• Total time complexity: O(|V|²) 

In conclusion: Since HC is NP-complete, and we've shown a polynomial-time reduction from HC to 
TSP, we can conclude that TSP is NP-hard. 

 

 

 

The Metric Traveling Salesperson Problem (Metric TSP) is a special case of the general TSP where the 
distances between cities satisfy the triangle inequality. Formally: 

- Input: A complete, undirected graph G = (V, E) where V is the set of vertices (cities) and E is the set of 
edges (connections between cities). Each edge (u, v) has a non-negative weight w(u, v) representing 
the distance between cities u and v. 

- The weights satisfy the triangle inequality: For any three vertices u, v, and w, w(u, v) ≤ w(u, w) + w(w, 
v). 

- Goal: Find the shortest tour that visits each city exactly once and returns to the starting city. 

2-Approximation Algorithm: 

The 2-approximation algorithm for Metric TSP seen in class is as follows: 

1. Compute a Minimum Spanning Tree (MST) T of the graph G. 

2. Perform a depth-first search (DFS) traversal of T, listing vertices in the order they are visited. 
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3. Construct a Hamiltonian cycle H by following the order of vertices from the DFS traversal, but 
skipping any vertices that have already been visited. 

4. Return H as the approximate solution. 

This algorithm guarantees a tour with total weight at most twice the weight of the optimal tour. The 
approximation factor of 2 is derived from: 

- The weight of the MST is a lower bound on the optimal TSP tour. 

- The DFS traversal of the MST visits each edge twice. 

- Shortcutting (skipping repeated vertices) can only decrease the tour length due to the triangle 
inequality. 

This algorithm is efficient, running in O(n^2) time for a graph with n vertices, as computing the MST 
and performing DFS can both be done in O(n^2) time for a complete graph. 

 

To solve this problem, we reference minimum spanning tree algorithms, particularly Kruskal's 
algorithm and its efficient implementation using the Union-Find data structure. 

(a) When all edges have weight 1: 

In this case, any spanning tree will be a minimum spanning tree, since all spanning trees will have the 
same total weight of n-1 (where n is the number of vertices). We can use a simple breadth-first search 
(BFS) or depth-first search (DFS) to find a spanning tree in O(m) time, where m is the number of edges. 

Algorithm: 

1. Choose an arbitrary starting vertex s. 

2. Perform a BFS or DFS from s, keeping track of the edges used to discover new vertices. 

3. The set of edges used forms a minimum spanning tree. 

Analysis: 

- Time complexity: O(m) - we visit each edge at most once. 

- Space complexity: O(n) - for the queue or stack used in BFS/DFS. 

(b) When edges have weights 1 or 2: 

For this case, we can modify Kruskal's algorithm to run in O(m) time by exploiting the fact that there 
are only two possible edge weights. 

Algorithm: 
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1. Partition the edges into two sets: E1 (edges with weight 1) and E2 (edges with weight 2). 

2. Initialize a Union-Find data structure for the vertices. 

3. Process all edges in E1 first: 

   - For each edge (u,v) in E1: 

     - If Find(u) ≠ Find(v): 

       - Add (u,v) to the MST 

       - Union(u,v) 

4. If the MST is not complete, process edges in E2: 

   - For each edge (u,v) in E2: 

     - If Find(u) ≠ Find(v): 

       - Add (u,v) to the MST 

       - Union(u,v) 

This algorithm ensures we use as many weight-1 edges as possible before using any weight-2 edges, 
thus guaranteeing a minimum spanning tree. The O(m) time complexity is achieved by avoiding the 
need to sort edges, which is typically required in Kruskal's algorithm. 

 

Here, we use Karger since the hint uses that inequality and the only point in the program we saw that 
is exactly that analysis – so, that’s why we use that in place of a “normal” Chernoff Bound.  

Characterize the event of getting a probability at least 1
𝑛

 using Karger’s analysis; run different times the 

analysis and fix a constant 𝑑, 𝑑 > 0: 

Pr (𝑋 >
1

𝑛
) >

1

𝑛𝑑
 

Since the probability is at least 1
𝑛

, so we characterize using Karger. Here, we will characterize the 

probability of failure (the complement with respect to the previous, so 1 − 1

𝑛
, running 𝑘 times to 

reduce the error probability.  

We want to find a value for 𝑘 such that 𝑃𝑟 (1 − 1

𝑛
)
𝑘
≤

1

𝑛𝑑
. In this case, it’s standard the use of this 

inequality: 

(1 +
𝑥

𝑦
)
𝑦

≤ 𝑒𝑥, 𝑦 ≥ 1, 𝑦 ≥ 𝑥 
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This inequality is derived from the exponential function and the binomial expansion. It represents an 

upper bound on the expression (1 + 𝑥

𝑦
)
𝑦

, showing that it grows slower than 𝑒𝑥.  

Now, we use Karger’s analysis, in place of using 𝑘 = 𝑛2 we use 𝑘 = 𝑛 and everything comes naturally. 

By choosing 𝑘 = 𝑑𝑛ln (𝑛) it follows that (it holds 𝑑 = 1 coming from Karger): 

(1 −
1

𝑛
)
𝑘=𝑛

≤ 𝑒−1 =
1

𝑒
→ is not in the form 1

𝑛𝑑
 

Recall the following from the Karger analysis (choice of 𝑘 and rest of reasoning is that): 

𝑒−ln(𝑛
𝑑) =

1

𝑛𝑑
 

Continuing using Karger and the inequality:  

((1 −
1

𝑛
)
𝑛

)

ln(𝑛𝑑)

= (1 −
1

𝑛
)
𝑛 ln(𝑛)

 

Let’s wrap up: 

(1 −
1

𝑛
)
𝑘=𝑛 ln(𝑛)

= ((1 −
1

𝑛
)
𝑛

)

ln(𝑛)

 

≤ (𝑒−1)ln(𝑛) = 𝑒−ln(𝑛) =
1

𝑛
 

For reference from theory, Karger’s analysis is this. 

Pr (𝑡ℎ𝑒 𝑘 𝑟𝑢𝑛𝑠 𝑜𝑓 𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁 𝑑𝑜 𝑛𝑜𝑡 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑚𝑖𝑛 𝑐𝑢𝑡) ≤ (1 − 2

𝑛2
)
𝑘

≤
1

𝑛𝑑
 for some constant 𝑑 > 0 

The previous one is the probability of an unsuccessful event, so we want it very low, something like 1
𝑛𝑑

. 

We want to find a value for 𝑘 such that (1 − 2

𝑛2
)
𝑘
≤

1

𝑛𝑑
. In this case, it’s standard the use of this 

inequality: 

(1 +
𝑥

𝑦
)
𝑦

≤ 𝑒𝑥, 𝑦 ≥ 1, 𝑦 ≥ 𝑥 

This inequality is derived from the exponential function and the binomial expansion. It represents an 

upper bound on the expression (1 + 𝑥

𝑦
)
𝑦

, showing that it grows slower than 𝑒𝑥. The probability of not 

contracting the minimum cut in each iteration needs to be bounded and manipulated to ensure the 
overall algorithm's success probability is high. 

By choosing 𝑘 = 𝑑𝑛2ln (𝑛) 

2
 it follows that: 

((1 −
2

𝑛2
)
𝑛2

)

ln(𝑛𝑑)

≤ 𝑒−ln(𝑛
𝑑) =

1

𝑛𝑑
 

Given I am curious, I asked myself: why exactly that value for 𝑘? 
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Consider the probability of success if 2
𝑛2

 while the failure is, by complement, 1 − 2

𝑛2
 which, amplified 

by 𝑘 runs, becomes (1 − 2

𝑛2
)
𝑘

. The constant 𝑑 is the desired level of confidence to keep the wanted 

threshold (in this case 1
𝑛𝑑

) as low as possible. Then, using some good old GPT-4: 

 

 

 

 

 

 

 

 

 

 

 

Moving on:  

(1 −
2

𝑛2
)
𝑘=𝑛2

≤ 𝑒−2 =
1

𝑒2
→ is not in the form 1

𝑛𝑑
 

Recall the following: 

𝑒−ln(𝑛
𝑑) =

1

𝑛𝑑
 

Let’s apply that: 

((1 −
2

𝑛2
)
𝑛2

)

ln(𝑛𝑑)

= (1 −
2

𝑛2
)
𝑛2 ln(𝑛𝑑)

 

Let’s wrap up (here, in the prof. notes, 𝑑 magically disappears, but I assume it to be 1 so this works): 

(1 −
2

𝑛2
)
𝑘=
𝑑𝑛2 ln(𝑛𝑑)

2
= ((1 −

2

𝑛2
)
𝑛2

)

ln(𝑛𝑑)
2

 

≤ (𝑒−2)
ln(𝑛𝑑)
2 = 𝑒−ln(𝑛

𝑑) = 𝑛𝑑 =
1

𝑛𝑑
 

Then, by choosing that value for 𝑘 the Karger’s algorithm succeeds with high probability:  

⇒ Pr(𝐾𝐴𝑅𝐺𝐸𝑅 𝑠𝑢𝑐𝑐𝑒𝑒𝑑𝑠) > 1 −
1

𝑛𝑑
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So, in the end, the Karger algorithm accumulates the size of the min-cut with probability at least 1
𝑛𝑑

. 

14.4 EXAM OF 08-07-2024 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) Kruskal: sort by weight in ascending order, then select edges: {𝑒, 𝑓}, {𝑒, 𝑑}, {𝑎, 𝑏}, {𝑑, 𝑐}, {𝑎, 𝑑} 

c) Prim: start from a source vertex then grow a spanning tree from there: 
{𝑎, 𝑏}, {𝑎, 𝑑}, {𝑑, 𝑒}, {𝑒, 𝑓}, {𝑐, 𝑑} 

Alternatively, a better graph here: 
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(a) 𝑂(𝑚|𝑓∗|) 

(b) 𝑂(𝑛3) 

(c) NP-hard 

(d) 𝑂(𝑛 ∗ 𝑚) 

 

 

Karger is a Monte Carlo (randomized algorithm which may fail) algorithm which considers and solves 
the problem of the minimum cut (cut of minimum size so to remove the minimum number of edges to 
make the graph disconnected). It revolves around the concept of “contraction” (have two vertices 
merge into each other), so choosing an edge at random, contract the two vertices of that edge and 
removing all of the edges incident to both vertices, keeping the smallest cut found. 

The algorithm is probabilistic, meaning it may not always find the true minimum cut, but repeating it 
increases the probability of finding the correct result. The number of repetitions needed for a high 
probability of success is typically polynomial in the number of vertices. 
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(a) 

Let's consider the steps involved in a straightforward implementation of the greedy algorithm: 

1. Sort the jobs in non-increasing order of their running times. This takes 𝑂(𝑛𝑙𝑜𝑔(𝑛) time. 

2. Iterate through the sorted jobs and assign each job to the machine with the smallest current 
load. This step takes 𝑂(𝑛) time to iterate through the jobs, and for each job, we need to find 
the machine with the minimum load, which takes 𝑂(𝑚) time. Therefore, this step takes 𝑂(𝑛𝑚)  

The total running time is 𝑂(𝑛 𝑙𝑜𝑔 𝑛) + 𝑂(𝑛𝑚). In the worst case, m could be O(n), making the running 
time 𝑂(𝑛2). However, when 𝑚 is considered a constant or bounded by a constant, the running time is 
dominated by 𝑂(𝑛 𝑙𝑜𝑔 𝑛). 

Alternatively: 

The straightforward implementation of the greedy algorithm leads to a running time of 𝑂(𝑚𝑛) This is 
because for each job, you need to find the machine with the smallest load, which takes 𝑂(𝑚) time, 
and there are 𝑛 jobs. 

To achieve a faster implementation, we can use a min-heap (or priority queue) to keep track of the 
loads of the machines. The heap allows us to efficiently find and update the machine with the 
smallest load. These are the implementation steps: 

1. Initialize a min-heap with the loads of all mmm machines (all initially 0). 

2. For each job 𝑡𝑖: 

1. Extract the minimum load from the heap. 

2. Add 𝑡𝑖 to this load. 

3. Insert the updated load back into the heap. 
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Using a min-heap, each insertion and extraction operation takes 𝑂(log(𝑚)) time, so the overall 
running time is 𝑂(𝑛𝑙𝑜𝑔(𝑚)). 

(b) 

To prove that the greedy algorithm is a 2-approximation algorithm, we need to show that for any input 
instance, the makespan 𝑀 produced by the greedy algorithm is at most 2 times the optimal makespan 
𝑀∗. Let's start with the given upper bound on the makespan 𝑀 of the greedy algorithm: 

𝑀 ≤ max
𝑖=1,…𝑛

𝑡𝑖 +
1

𝑚
∑𝑡𝑖

𝑛

𝑖=1

 

We can derive two lower bounds on the optimal makespan 𝑀∗: 

1. The optimal makespan 𝑀∗ is at least the maximum running time of any job: 𝑀∗ ≥ max
𝑖=1,…𝑛

𝑡𝑖. This 

is because the job with the maximum running time must be assigned to some machine, and 
that machine will have a load of at least max

𝑖=1,…𝑛
𝑡𝑖. 

2. The optimal makespan 𝑀∗ is at least the average load on the machines: 𝑀∗ ≥ ( 1
𝑚
)
∗
∑ 𝑡𝑖
𝑛
𝑖=1  i=1 

ti This is because the total load (sum of all job running times) must be distributed among the m 
machines, and the average load is a lower bound on the maximum load. 

Using these two lower bounds, we can prove that 𝑀 ≤ 2𝑀∗: 

𝑀 ≤ max
𝑖=1,…𝑛

𝑡𝑖 +
1

𝑚
∑𝑡𝑖

𝑛

𝑖=1

≤ 𝑀∗ +𝑀∗ = 2𝑀∗ 

Therefore, the greedy algorithm is a 2-approximation algorithm for this problem. 

To generalize this result to any number of machines m: 

Let 𝑀 be the makespan of the greedy algorithm, and M* be the optimal makespan. We have:  

𝑀 ≤ max
𝑖=1,…𝑛

𝑡𝑖 +
1

𝑚
∑𝑡𝑖

𝑛

𝑖=1

≤ 𝑀∗ +𝑀∗ = 2𝑀∗ 

Thus, the greedy algorithm is a 2-approximation algorithm for the problem of minimizing the 
makespan when assigning n jobs to m machines. 

Alternatively: 
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(c) 

To prove a lower bound on the approximation factor of the greedy algorithm, we need to find an 
instance where the ratio between the makespan produced by the greedy algorithm (M) and the 
optimal makespan (M*) is as large as possible. We will consider the simple case where m = 2 and the 
number of jobs n is arbitrary. 

Consider the following instance: 

- Job 1 has a running time of 𝑡1 = 1 

- Jobs 2 𝑡𝑜 𝑛 have running times of 𝑡2 = 𝑡3 = ⋯ = 𝑡𝑛 =
1

2
 

The optimal assignment for this instance is: 

- Machine 1: Job 1 
- Machine 2: Jobs 2 to n 

This results in an optimal makespan of M* = 1. 

Now, let's consider what the greedy algorithm might do. In the worst case, the greedy algorithm may 
assign jobs in the following way: 

- Machine 1: Job 1, and half of the remaining jobs (i.e., 𝑛−1
2

  jobs if n is odd, or 𝑛−2
2

 jobs if 𝑛 is 

even) 
- Machine 2: The other half of the remaining jobs 

 

In this case, the makespan of the greedy algorithm (M) will be: 

𝑀 = 1 + (
𝑛−1

2
∗
1

2
) if n is odd 

𝑀 = 1 + (
𝑛−2

2
∗
1

2
) if n is even 

As n approaches infinity, the ratio  𝑀
𝑀∗
 approaches 3

2
: 

lim
𝑛→∞

1 + (
𝑛 − 1
2 ∗

1
2)

1
 =
3

2
  for odd n 

lim
𝑛→∞

1 + (
𝑛 − 2
2 ∗

1
2)

1
 =
3

2
  for even n 

This shows that the approximation factor of the greedy algorithm can be as bad as 3
2

 in the simple case 

where 𝑚 = 2 and 𝑛 is arbitrary. 

To prove that this lower bound of 3
2

 is tight for this case, we need to show that for any instance with 

𝑚 = 2 machines and n jobs, the ratio 𝑀
𝑀∗

 is always less than or equal to 3
2

. 

From part (b), we know that for any instance, 𝑀 ≤ 2𝑀∗ Therefore, 𝑀
𝑀∗
≤ 2 
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Thus, the lower bound of 3
2

  is tight for the case where 𝑚 = 2 and 𝑛 is arbitrary, as we have found an 

instance that achieves this ratio, and we have shown that the ratio cannot exceed 2 for any instance in 
this case. 

Alternatively: 
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First and foremost, 𝑋1 = 1 if coin is tail, 0 otherwise. 𝑋𝑖′𝑠 are independent between each other and 

Pr(𝑋𝑖 = 1) =
1

2
 . 

We have 𝜇 = 𝐸[𝑋] = 𝐸[∑ 𝑋𝑖] = 𝑛 ∗
1

2
=
𝑛

2
𝑛
𝑖=1 . Now find 𝛿 with (1 + 𝛿)𝜇 = 𝑛

2
+
√6𝑛𝑙𝑛(𝑛)

2
 

So, we do the following: 

(1 + 𝛿)𝜇 =
𝑛

2
+
√6𝑛𝑙𝑛(𝑛)

2
 

(1 + 𝛿)
𝑛

2
=
𝑛

2
+
√6𝑛𝑙𝑛(𝑛)

2
 

(1 + 𝛿)
𝑛

2
∗ 2 =

𝑛 + √6𝑛𝑙𝑛(𝑛)

2
∗ 2 

(1 + 𝛿)𝑛 = 𝑛 +√6𝑛𝑙𝑛(𝑛) 

(1 + 𝛿) = 1 +
√6𝑛𝑙𝑛(𝑛)

𝑛
 

𝛿 =
√6𝑛𝑙𝑛(𝑛)

𝑛
 

Now, we apply the bound as follows: 

Pr(𝑋 > (1 + 𝛿)𝜇) ≤ 𝑒
−𝜇𝛿2

3  

= Pr(𝑋 >
𝑛

2
+
√6𝑛𝑙𝑛(𝑛)

2
) ≤ 

≤ 𝑒

−
𝑛
2
∗(
√6𝑛𝑙𝑛(𝑛)

𝑛 )

2

3  

≤ 𝑒

−
𝑛
2
∗(
62𝑛𝑙𝑛(𝑛)

𝑛2
)

3  

≤ 𝑒−ln(𝑛) 

≤
1

𝑛
 

as the exercise wanted. 
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For a handwritten solution (slightly different, more compact 
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14.5 EXAM OF 24-06-2024 
 

 

 
 

a) The maximum flow problem is a network optimization problem which, given a directed graph where 
each edge has a capacity, wants to find all possible paths from a single source 𝑠 ∈ 𝑉 to a single sink 
𝑡 ∈ 𝑉, wants to find a flow of maximum value (the previous is said to be flow network) – maximum flow 
– while respecting capacity constraints of each edge. 

The flow is a function which considers capacity, conservation of flows, so to not surpass capacity of 
edge and capacity going in = capacity going out (flow conservation). The value of a flow is the sum of 
all flows going in and out vertices thanks to edges. 

Consider the value of a flow is |𝑓| = ∑ 𝑓(𝑠, 𝑣)𝑣∈𝑉 𝑠.𝑡.(𝑠,𝑣)∈𝐸  

The algorithm takes an augmenting path and changes the path flow, continuing until there is no other 
path from the source to the sink. 

b) TSP is a classic optimization problem which asks, "Given a list of cities and the distances between 
each pair of cities, what is the shortest possible route that visits each city exactly once and returns to 
the origin city?". It’s NP-Hard, since no poly-time algorithm exists to solve it and NP-Complete.   

Its statement is the following: Given a complete undirected graph and a function 𝑤: 𝐸 → ℝ+, output a 
cycle that passes through every vertex once (𝑇 ⊆ 𝐸), minimizing the cost of the tour ∑ 𝑤(𝑒)𝑒∈𝑇  

 
a) 2 

b) There is no approx-algo (NO) 

c) 3
2

 

d) log(𝑛)  

 

 

Karger is a Monte Carlo (randomized algorithm which may fail) algorithm which considers and solves 
the problem of the minimum cut (cut of minimum size so to remove the minimum number of edges to 
make the graph disconnected). It revolves around the concept of “contraction” (have two vertices 
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merge into each other), so choosing an edge at random, contract the two vertices of that edge and 
removing all of the edges incident to both vertices, keeping the smallest cut found. 

The algorithm is probabilistic, meaning it may not always find the true minimum cut, but repeating it 
increases the probability of finding the correct result. The number of repetitions needed for a high 
probability of success is typically polynomial in the number of vertices. 

 
To reduce the problem of finding a maximum-weight spanning tree to a minimum spanning tree 
problem, we can use a simple weight transformation. Here's how we can approach this: 

1. Take the original graph 𝐺 and create a new graph 𝐺′ with the same structure but transform 
each edge weight 𝑤 to −𝑤 (or to 𝑊 −𝑤, where 𝑊 is a value larger than the maximum weight in 
the original graph). 

2. Use any minimum spanning tree algorithm (like Kruskal's or Prim's) on 𝐺′ as a "black box". 

3. The minimum spanning tree of 𝐺′ will correspond to the maximum spanning tree of 𝐺. 

Motivation: 

• By negating the weights (or subtracting from a large value), we invert the problem. The 
"cheapest" edges in 𝐺′ correspond to the most expensive edges in 𝐺. 

• Minimum spanning tree algorithms choose the cheapest edges that connect all vertices 
without forming cycles. 

• Therefore, when applied to 𝐺′, the algorithm will select the edges that were originally the 
heaviest in 𝐺, resulting in a maximum-weight spanning tree for the original problem. 

So, in short (coming from the group): 

- Find a MaxST → just multiply 𝑥 − 1 every weight and then give it to MST, the result is a MaxST 

 
To reduce this to a minimum spanning tree problem: 

1. For each edge weight 𝑤, compute 𝑙𝑜𝑔(𝑤). 

2. Use a standard minimum spanning tree algorithm on the graph with these transformed 
weights. 
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3. The resulting tree will be the minimum-product spanning tree for the original graph. 

This works since thee logarithm transformation converts the product of weights to a sum of 
logarithms. Minimizing the sum of logarithms is equivalent to minimizing the product of the original 
weights. Such is motivated by the fact the logarithm is a monotonically increasing function for positive 
numbers. 

So, in short (coming from the group): 

- Find a 𝑀𝑖𝑛𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑆𝑇 → From the hint there was the solution, since 𝑙𝑜𝑔(𝑥𝑦) =
𝑙𝑜𝑔(𝑥) + 𝑙𝑜𝑔(𝑦), just trasnform every weight into its log counterpart and then give it to MST, 
the result is a MinMultiplicationST 

 

 

 

To reduce this to a minimum spanning tree problem: 

1. Instead of finding edges to remove to make the graph acyclic, we can find edges to keep that 
form a spanning tree. 

2. Use a standard minimum spanning tree algorithm on the original graph 𝐺. 

3. The set 𝐹 will be all edges in 𝐸 that are not in the minimum spanning tree. 

This works since removing all edges not in the MST will leave an acyclic graph (the MST itself) – given a 
tree has no cycles to begin with as constructive property 

The removed edges (𝐹) will have the maximum weight among all sets that could be removed to leave a 
tree, which is equivalent to having the minimum weight among all sets whose removal leaves a tree. 

So, in short (coming from the group): 

- Find a subset of edges of min weigh s.t. there is no cycle → we can run point a) (MaxST) and 
then subtract MaxST from our graph, the result is a subset of edges of min weigh s.t. there is no 
cycle 

 

 

 

 

 

 

 

𝑋 = {1,2,3,4,5,6} = dice’s universe 

 Characterize the event 𝑋𝑖 = 1 if we get a number, 0 otherwise 
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Pr(𝑋𝑖 = 1) =
1

6
  

𝑋 =∑𝑋𝑖 =

𝑛

𝑖=1

∑𝐸[𝑋𝑖] =

𝑛

𝑖=1

𝜇 = 𝑛 ∗
1

6
=
𝑛

6
 

We find now 𝛿: 

(1 + 𝛿)𝜇 =
𝑛

6
+
√18𝑛𝑙𝑛(𝑛)

6
 

(1 + 𝛿)
𝑛

6
=
𝑛

6
+
√18𝑛𝑙𝑛(𝑛)

6
 

(1 + 𝛿)𝑛 = 𝑛 + √18𝑛𝑙𝑛(𝑛) 

𝑛 + 𝛿𝑛 = 𝑛 + √18𝑛𝑙𝑛(𝑛) 

𝛿𝑛 = √18𝑛𝑙𝑛(𝑛) 

𝛿 =
√18𝑛𝑙𝑛(𝑛)

𝑛
 

Apply the Chernoff Bound now. 

Pr(𝑋 >
𝑛

6
+
√18𝑛𝑙𝑛(𝑛)

6
) ≤ 𝑒

−𝜇𝛿2

3  

≤ 𝑒

−
𝑛
6(
√18𝑛𝑙𝑛(𝑛)

𝑛 )

2

3  

≤ 𝑒
−
𝑛
6
∗
18𝑛𝑙𝑛(𝑛)

𝑛2
3  

≤ 𝑒
(−
𝑛
6
)∗
18𝑛𝑙𝑛(𝑛)

𝑛2
∗
1
3 = 𝑒−ln(𝑛) =

1

𝑒ln(𝑛)
=
1

𝑛
 

The probability of seeing the same face is 1
𝑛

.  

It has to be applied with the Union Bound, which is for the “n” – in this case is 6. From the correction of 

the exam, we know this has to be applied for 6, so it is 6 ∗ 1
𝑛
=
6

𝑛
 

The probability of NOT seeing the same face for all the dices for more than 𝑛
6
+
√18𝑛𝑙𝑛(𝑛)

6
 times is 1 − 6

𝑛
 

(from the correction – see the group – this is the final result, on which to apply the Union Bound).  



186  Advanced Algorithms Simple (for real) 
 

Written by Gabriel R. 

14.6 EXAM OF 22-06-2023 
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Set cover is an optimization problem that models many problems requiring resources to be allocated. 
It aims to find the least number of subsets that cover some universal set.  

Its inputs are: 

- 𝐼 = (𝑋, 𝐹) = instance of the set covering problem 
- 𝑋 = set of elements of any kind, called “universe” 
- 𝐹 ⊆ {𝑆: 𝑆 ⊆ 𝑋} = 𝐵(𝑋) 

a. 𝐵 stands for “Boolean”: set of all subsets of 𝑋 

There is a constraint that needs to be always respected: ∀𝑥 ∈ 𝑋, ∃ 𝑆 ∈ 𝐹: 𝑥 ∈ 𝑆 i.e., “𝐹 covers 𝑋” 

Optimization problem: (smallest subset of 𝐹 having its members covering all 𝑋) → find 𝐹′ ⊆ 𝐹 s.t. 

5) 𝐹′ covers 𝑋 
6) min |𝐹′| 

Example: 

𝑋 = {1,2,3,4,5}  

𝐹 = {{1,2,3}, {2,4}, {3,4}, {4,5}}  

⇒ 𝐹∗ = {{1,2,3}, {4,5}} 

The greedy method works by picking at each stage, the set 𝑆 that covers the greatest number of 
remaining elements that are uncovered: 

- choose the subset that contains the largest number of uncovered elements 
- remove from 𝑋 those covered elements 
- repeat until 𝑋 = ∅ 

𝐴𝑝𝑝𝑟𝑜𝑥_𝑆𝑒𝑡_𝐶𝑜𝑣𝑒𝑟(𝑋, 𝐹)  

 𝑈 = 𝑋 

 𝐹′ = ∅ // 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

 while 𝑈 ≠ ∅: do 

// 𝑡𝑎𝑘𝑒 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝐹 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑎𝑠 𝑚𝑎𝑛𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑎𝑠 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒  

  𝑙𝑒𝑡 𝑆 ∈ 𝐹 = |𝑆 ∩ 𝑈| = max
𝑆′∈𝐹

{|𝑆′ ∩ 𝑈|} 

  𝑈 ← 𝑈 ∖ 𝑆 // 𝑢𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, 𝑟𝑒𝑚𝑜𝑣𝑖𝑛𝑔 𝑡ℎ𝑜𝑠𝑒 𝑓𝑟𝑜𝑚 𝑆 

  𝐹 ← 𝐹 ∖ {𝑆} // 𝑟𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 𝑠𝑒𝑡𝑠 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑖𝑛𝑠𝑖𝑑𝑒 𝑜𝑓 𝐹 

  𝐹′ ← 𝐹′ ∪ {𝑆} 

 return 𝐹′ 
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ì 
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Consider 𝑋𝑖 = 1, 2,…𝑛 since we can assign the 𝑖𝑡ℎ ball to any possible bin. So, this is uniform at 
random. The load of the specific bin is given by 𝑋 = ∑ 𝑋𝑖

𝑛
𝑖=1 . 

First, we have to find 𝜇: 

𝜇 = 𝐸[𝑋] =∑𝐸[𝑋𝑖] = 𝑛 ∗
6 ln(𝑛)

𝑛

𝑛

𝑖=1

= 6ln (𝑛) 

Since each ball is assigned to a bin chosen uniformly at random, we have  

Pr(𝑋𝑖 = 1) =
1

𝑚
∗ 𝑛 =

1
𝑛

6 ln(𝑛)

∗ 𝑛 =
6ln(𝑛)

𝑛
 

To apply the Chernoff bound, we set 12ln (𝑛) equal to (1 + 𝛿) so: 

(1 + 𝛿)𝜇 = 12 ln(𝑛) 

(1 + 𝛿)6 ln(𝑛) = 12 ln(𝑛) 

(1 + 𝛿) = 2 

𝛿 = 1 

Now, we apply the bound: 

Pr(𝑋 > (1 + 𝛿)𝜇) ≤ 𝑒
−𝜇𝛿2

3  

Pr(𝑋 > 1 + 1) 6 ln(𝑛)) ≤ 𝑒−
6ln(𝑛)
3  

≤ 𝑒−2 ln(𝑛) 

Recall the property of exponentials and logarithms there, so: 

≤ 𝑒ln(𝑛
−2) 

Recall from the exercise that ln(𝑛) = log𝑒(𝑛) 

So, we have:  

𝑒ln(n
−2) =

1

𝑛2
 

as the exercise wanted. We showed with high probability the bin with maximum load containing at 
most 12ln (𝑛) balls. We applied this for one bin, so we have to use now the union bound; simply use 

the previous result multiplying by all bins, so 𝑚 = 𝑛

6𝑛(ln(𝑛))
: 𝑛

6 ln(𝑛)
∗
1

𝑛2
=

1

6𝑛𝑙𝑛(𝑛)
 

To characterize the no bin will exceed, use the complement event → 1 − 1

6𝑛𝑙𝑛(𝑛)
= 1 − 𝑜 (

1

𝑛
) 
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14.7 EXAM OF 06-07-2023 

DFS/BFS can be used to solve the following problems: 

- Test if graph is connected 
- Find connected components 
- Find a 𝑠 − 𝑡 path 
- Find a cycle, if it exists 
- Find a spanning tree, if graph is connected 

Complexity for both: 𝑂(𝑛 +𝑚) 

 

 

 

 

 

 

 

b) Kruskal: sort by weight in ascending order, then select edges: {𝑒, 𝑓}, {𝑒, 𝑑}, {𝑎, 𝑏}, {𝑑, 𝑐}, {𝑎, 𝑑} 

c) Prim: start from a source vertex then grow a spanning tree from there: 
{𝑎, 𝑏}, {𝑎, 𝑑}, {𝑑, 𝑒}, {𝑒, 𝑓}, {𝑐, 𝑑} 
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Alternatively, a better graph here: 

 
 

 

 

 

 

(a) 𝑂(𝑚|𝑓∗|) 

(b) 𝑂(𝑛3) 

(c) NP-hard 

(d) 𝑂(𝑛 ∗ 𝑚) 
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(a) (The first part gives you the code; to resemble what the professor did in his examples of exams 
exercises, we write the following). First of all, we observe that, since 𝑇𝑜𝑡𝑎𝑙 ≤ 1 and a value 𝑊[𝑖] is 
added to 𝑇𝑜𝑡𝑎𝑙 only if 𝑇𝑜𝑡𝑎𝑙[𝑏] +𝑊[𝑖] ≤ 1, then the returned value is always the cost of a feasible 

solution. If 𝑆∗ denotes the optimal solution, we need to prove 𝑆∗

𝑇𝑜𝑡𝑎𝑙
≤ 2 →

𝑆∗

𝑆′
≤ 2. 

- Case 1: The algorithm returns out of the for loop; hence 𝑇𝑜𝑡𝑎𝑙 = ∑ 𝑊[𝑖] ≤ 1𝑛
𝑖=1 , that is 𝑇𝑜𝑡𝑎𝑙 = 𝑆∗ 

and thus 𝑆∗

𝑇𝑜𝑡𝑎𝑙
= 1 ≤ 2 

- Case 2: The algorithm returns from inside the for loop: hence there exists and index 𝑖′ such that 
𝑇𝑜𝑡𝑎𝑙 +𝑊[𝑖′] > 1. Observe that: 

𝑊[𝑖′] < 𝑊[𝑖] < 𝑇𝑜𝑡𝑎𝑙 

and hence 2 ∗ 𝑇𝑜𝑡𝑎𝑙 > 𝑇𝑜𝑡𝑎𝑙 +𝑊[𝑖′] > 1 that is 𝑇𝑜𝑡𝑎𝑙 > 1

2
≥
𝑆∗

2
. 

To give a more concrete explanation (done formally): 

The algorithm starts with one bin and proceeds through each item. If the current item fits in the 
existing bin (total weight including the item remains ≤ 1), it is added to the current bin. Otherwise, a 
new bin is opened for this item. 

The structure to prove would be the following, since this is a minimization problem: 

|𝑆′| ≤ 2|𝑆∗| 

or completely: 

|𝑆′| ≤ ⋯ ≤ 2|𝑆∗| →
|𝑆′|

|𝑆∗|
≤ 2 

The algorithm places the next item in the current bin if it fits; otherwise, it opens a new bin. Thus, each 
bin (except possibly the last one) has a total weight of more than 0.5.  

This is because if the next item could not fit, the current bin's weight is more than 1 −
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑛𝑒𝑥𝑡 𝑖𝑡𝑒𝑚 and since each item's weight is at most 1. Each bin is at least half full, except for 
the last one. 

In the optimal packing, each bin is packed as much as possible without exceeding the total weight of 
1. The optimal number of bins would select all bins to ensure the sum is actually 1. 

The greedy choice would consider all bins, so to select everything if possible → 𝑘 > 1

2
 

So, we have → 𝑘−1
2
<
𝑘

2
< ∑ weights. 

Specifically, considering the total weight 𝑊 of all items, the optimal solution, at its absolute densest, 
would pack bins with a total weight of 1 per bin. Therefore, |𝑆∗| ≥ |𝑊∗|. 

To ensure this, we would select pairs of bins, while the greed would simply select all bins. Since each 
bin in the algorithm has a total weight exceeding 0.5 (except possibly the last one), the number of bins 
used by the algorithm |𝑆′| is at most 2𝑊. Hence, |𝑆′| ≤ 2|𝑊|. Given |𝑆∗| ≥ |𝑊|, we have |𝑆′| ≤ 2|𝑆∗| 
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Let’s structure completely the proof: 

- Lower bound to the cost of 𝑆∗ 

As said, the optimal solution would be bounded at least by the number of bins, given each one is 

chosen, with weight > 0.5 (1
2
). If we pair the bins, it’s clear we should consider the greedy choice 

would be at least half → |𝑆′| ≤ 2|𝑆∗| 

- Upper bound to the cost of |𝑆′| 

By construction, the optimal solution 𝑆∗ packs items such that the total weight in each bin is 
maximally utilized but does not exceed 1. This means the greedy solution is exactly half of the full 
pairs of bins, so: 

|𝑆′| ≤ 2|𝑆∗| 

(b)  

Consider the array: 

𝑆[0, 1, 1, 0… . ] 

|𝑆′| → 𝑡𝑎𝑘𝑒 𝑎𝑙𝑙 𝑏𝑖𝑛𝑠 

|𝑆∗| → 𝑡𝑎𝑘𝑒 𝑎 𝑐𝑜𝑢𝑝𝑙𝑒 𝑜𝑓 𝑏𝑖𝑛𝑠, 𝑤ℎ𝑒𝑟𝑒 𝑠𝑎𝑚𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑎𝑟𝑒 𝑡𝑎𝑘𝑒𝑛 ℎ𝑎𝑙𝑓 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑜𝑢𝑝𝑙𝑒 →
𝑛

2
 

|𝑆′|

|𝑆∗|
=
𝑛
𝑛
2

= 2 

In the group, the following solution was given: 
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Here, we use Karger since the hint uses that inequality and the only point in the program we saw that 
is exactly that analysis – so, that’s why we use that in place of a “normal” Chernoff Bound.  

Characterize the event of getting a probability at least 1
𝑛

 using Karger’s analysis; run different times the 

analysis and fix a constant 𝑑, 𝑑 > 0: 

Pr (𝑋 >
1

𝑛
) >

1

𝑛𝑑
 

Since the probability is at least 1
𝑛

, so we characterize using Karger. Here, we will characterize the 

probability of failure (the complement with respect to the previous, so 1 − 1

𝑛
, running 𝑘 times to 

reduce the error probability.  

We want to find a value for 𝑘 such that 𝑃𝑟 (1 − 1

𝑛
)
𝑘
≤

1

𝑛𝑑
. In this case, it’s standard the use of this 

inequality: 

(1 +
𝑥

𝑦
)
𝑦

≤ 𝑒𝑥, 𝑦 ≥ 1, 𝑦 ≥ 𝑥 

This inequality is derived from the exponential function and the binomial expansion. It represents an 

upper bound on the expression (1 + 𝑥

𝑦
)
𝑦

, showing that it grows slower than 𝑒𝑥.  

Now, we use Karger’s analysis, in place of using 𝑘 = 𝑛2 we use 𝑘 = 𝑛 and everything comes naturally. 

By choosing 𝑘 = 𝑑𝑛ln (𝑛) it follows that (it holds 𝑑 = 1 coming from Karger): 

(1 −
1

𝑛
)
𝑘=𝑛

≤ 𝑒−1 =
1

𝑒
→ is not in the form 1

𝑛𝑑
 

Recall the following from the Karger analysis (choice of 𝑘 and rest of reasoning is that): 

𝑒−ln(𝑛
𝑑) =

1

𝑛𝑑
 

Continuing using Karger and the inequality:  

((1 −
1

𝑛
)
𝑛

)

ln(𝑛𝑑)

= (1 −
1

𝑛
)
𝑛 ln(𝑛)

 

Let’s wrap up: 

(1 −
1

𝑛
)
𝑘=𝑛 ln(𝑛)

= ((1 −
1

𝑛
)
𝑛

)

ln(𝑛)

 

≤ (𝑒−1)ln(𝑛) = 𝑒−ln(𝑛) =
1

𝑛
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For reference from theory, Karger’s analysis is this. 

Pr (𝑡ℎ𝑒 𝑘 𝑟𝑢𝑛𝑠 𝑜𝑓 𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁 𝑑𝑜 𝑛𝑜𝑡 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑚𝑖𝑛 𝑐𝑢𝑡) ≤ (1 − 2

𝑛2
)
𝑘

≤
1

𝑛𝑑
 for some constant 𝑑 > 0 

The previous one is the probability of an unsuccessful event, so we want it very low, something like 1
𝑛𝑑

. 

We want to find a value for 𝑘 such that (1 − 2

𝑛2
)
𝑘
≤

1

𝑛𝑑
. In this case, it’s standard the use of this 

inequality: 

(1 +
𝑥

𝑦
)
𝑦

≤ 𝑒𝑥, 𝑦 ≥ 1, 𝑦 ≥ 𝑥 

This inequality is derived from the exponential function and the binomial expansion. It represents an 

upper bound on the expression (1 + 𝑥

𝑦
)
𝑦

, showing that it grows slower than 𝑒𝑥. The probability of not 

contracting the minimum cut in each iteration needs to be bounded and manipulated to ensure the 
overall algorithm's success probability is high. 

By choosing 𝑘 = 𝑑𝑛2ln (𝑛) 

2
 it follows that: 

((1 −
2

𝑛2
)
𝑛2

)

ln(𝑛𝑑)

≤ 𝑒−ln(𝑛
𝑑) =

1

𝑛𝑑
 

Given I am curious, I asked myself: why exactly that value for 𝑘? 

Consider the probability of success if 2
𝑛2

 while the failure is, by complement, 1 − 2

𝑛2
 which, amplified 

by 𝑘 runs, becomes (1 − 2

𝑛2
)
𝑘

. The constant 𝑑 is the desired level of confidence to keep the wanted 

threshold (in this case 1
𝑛𝑑

) as low as possible. Then, using some good old GPT-4: 
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Moving on:  

(1 −
2

𝑛2
)
𝑘=𝑛2

≤ 𝑒−2 =
1

𝑒2
→ is not in the form 1

𝑛𝑑
 

Recall the following: 

𝑒−ln(𝑛
𝑑) =

1

𝑛𝑑
 

Let’s apply that: 

((1 −
2

𝑛2
)
𝑛2

)

ln(𝑛𝑑)

= (1 −
2

𝑛2
)
𝑛2 ln(𝑛𝑑)

 

Let’s wrap up (here, in the prof. notes, 𝑑 magically disappears, but I assume it to be 1 so this works): 

(1 −
2

𝑛2
)
𝑘=
𝑑𝑛2 ln(𝑛𝑑)

2
= ((1 −

2

𝑛2
)
𝑛2

)

ln(𝑛𝑑)
2

 

≤ (𝑒−2)
ln(𝑛𝑑)
2 = 𝑒−ln(𝑛

𝑑) = 𝑛𝑑 =
1

𝑛𝑑
 

Then, by choosing that value for 𝑘 the Karger’s algorithm succeeds with high probability:  

⇒ Pr(𝐾𝐴𝑅𝐺𝐸𝑅 𝑠𝑢𝑐𝑐𝑒𝑒𝑑𝑠) > 1 −
1

𝑛𝑑
 

So, in the end, the Karger algorithm accumulates the size of the min-cut with probability at least 1
𝑛𝑑

. 
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14.8 EXAM OF 30-08-2023 

Quoting the theory here (same exercise): 
• ∀𝑣 ∈ 𝑉 add a field 𝐿𝑉[𝑣].𝑝𝑎𝑟𝑒𝑛𝑡 
• Modify 𝐷𝐹𝑆(𝐺, 𝑣) s.t. when a 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 𝐸𝐷𝐺𝐸 (𝑣, 𝑤) is labeled  

o then 𝐿𝑉[𝑤]. 𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑣 (𝑣 is parent of 𝑤 in 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 𝐸𝐷𝐺𝐸 tree) 
• Run 𝐷𝐹𝑆(𝐺, 𝑠). Check if 𝑡 has been visited 

o NO: then return “No path” 
o YES: starting from 𝑡, follow the “parent” label, so as to build a path from 𝑡 to 𝑠 

• Complexity: 𝑂(𝑚𝑠) where 𝑚𝑠 is the number of edges of 𝑠 connected component 

 

  



198  Advanced Algorithms Simple (for real) 
 

Written by Gabriel R. 

The vertex cover (also called completely “minimum vertex cover”) is the a. minimum number of 
vertices that “touches” all edges. A 2-approximation algorithm designed in class was the one used for 
the TSP problem 

We use a greedy algorithm structured like the following: 

- Choose any edge 
- Add its endpoints to the solution 
- “Remove” the covered edges 
- Repeat 

We’ll show that this is a 2-approximation algorithm (which returns a solution whose cost is at most 
twice the optimal):  

procedure 𝐴𝑝𝑝𝑟𝑜𝑥_𝑉𝑒𝑟𝑡𝑒𝑥_𝐶𝑜𝑣𝑒𝑟(𝐺)  

 𝑉′ = ∅ 

𝐸′ = 𝐸  

while E′ ≠ ∅: do  

 𝐿𝑒𝑡 (𝑢, 𝑣) 𝑏𝑒 𝑎𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑒𝑑𝑔𝑒 𝑜𝑓 𝐸′ 

 𝑉′ = 𝑉′ ∪ {𝑢, 𝑣} 

 𝐸′ = 𝐸′ ∖ {(𝑢, 𝑧), (𝑣, 𝑤)} 

 // 𝑟𝑒𝑚𝑜𝑣𝑒 𝑒𝑑𝑔𝑒𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑢 𝑎𝑛𝑑 𝑣 𝑎𝑠 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠 

return 𝑉′  

Complexity: 𝑂(𝑛 +𝑚) 

 
The most similar problem is Set Cover; given a universe 𝑈 and a collection of subsets 𝑆1, 𝑆2, … 𝑆𝑛 of 𝑈, 
the goal is to find the smallest number of subsets such that every element in 𝑈 is covered by at least 
one of the selected subsets. A reference for this specific reduction can be also found here. 

To do the reduction: 

- Take an instance of Set Cover and use the same universe 𝑈 with subsets 𝑆1, 𝑆2, … 𝑆𝑛 for the 
maximum coverage problem 

  

https://cs.stackexchange.com/questions/32659/is-the-maximum-coverage-variant-of-vertex-cover-also-np-hard
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Specifically: 

 

 

 

 

 

 

 

 

The reduction process would work as follows: 

- Use the universe 𝑈 from Set Cover as universe 𝑋 for Maximum Coverage (𝑋 = 𝑈) 
- For any given 𝑘 representing the number of subsets, use the same subsets 𝑆1, 𝑆2, … 𝑆𝑛, this is 

the size of the optimal solution for Set Cover and Maximum Coverage alike 
- If Maximum Coverage can be solved in poly-time for any 𝑘, by trying all possible 𝑘 from 1 to 

𝑚, we can determine the smallest 𝑘 such that the maximum coverage is |𝑈| 
- Evaluate Maximum Coverage for all possible values of 𝑘 from 1 to 𝑚 

To prove this is correct: 

- if Set Cover has a solution for some 𝑘, it means the 𝑘 subsets cover the entire universe 𝑈 and 
applying this to Maximum Coverage will yield full coverage of 𝑈 for the selected 𝑘, showing the 
maximum coverage is |𝑈|; infact, this ensures the optimal selection of the correct number of 
subsets so to achieve the correct solution with respect to the number of elements of 
Coverage, ensuring a good enough cover for size 𝑘 
 

- if Maximum Coverage can be solved efficiently for any 𝑘, this means we can iterate through the 
subsets 𝑘 = 1 to 𝑚 (where 𝑚 is the number of subsets). The smallest 𝑘 that results in 
Maximum Coverage equaling |𝑈| corresponds to the smallest 𝑘 solving Set Cover 
 

a. Since the problem itself is NP-Hard, the ability to solve it using MCP implies that MCP 
must also be NP-hard, since we can check and evaluate Maximum Coverage for each 
subset 𝑘 up to 𝑚 and this happens since ∀𝑘 up to 𝑚 we check if the coverage equals 
|𝑈| and take the smallest one 

This proof clearly shows how a polynomial-time solution to Maximum Coverage would enable a 
polynomial-time solution to Set Cover, establishing the NP-hardness of Maximum Coverage through 
reduction defined precisely. 
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First and foremost, 𝑋1 = 1 if coin is tail, 0 otherwise. 𝑋𝑖′𝑠 are independent between each other and 

Pr(𝑋𝑖 = 1) =
1

2
 . 

We have 𝜇 = 𝐸[𝑋] = 𝐸[∑ 𝑋𝑖] = 𝑛 ∗
1

2
=
𝑛

2
𝑛
𝑖=1 . Now find 𝛿 with (1 + 𝛿)𝜇 = 𝑛

2
+
√6𝑛𝑙𝑛(𝑛)

2
 

So, we do the following: 

(1 + 𝛿)𝜇 =
𝑛

2
+
√6𝑛𝑙𝑛(𝑛)

2
 

(1 + 𝛿)
𝑛

2
=
𝑛

2
+
√6𝑛𝑙𝑛(𝑛)

2
 

(1 + 𝛿)
𝑛

2
∗ 2 =

𝑛 + √6𝑛𝑙𝑛(𝑛)

2
∗ 2 

(1 + 𝛿)𝑛 = 𝑛 +√6𝑛𝑙𝑛(𝑛) 

(1 + 𝛿) = 1 +
√6𝑛𝑙𝑛(𝑛)

𝑛
 

𝛿 =
√6𝑛𝑙𝑛(𝑛)

𝑛
 

Now, we apply the bound as follows: 

Pr(𝑋 > (1 + 𝛿)𝜇) ≤ 𝑒
−𝜇𝛿2

3  

= Pr(𝑋 >
𝑛

2
+
√6𝑛𝑙𝑛(𝑛)

2
) ≤ 

≤ 𝑒

−
𝑛
2
∗(
√6𝑛𝑙𝑛(𝑛)

𝑛 )

2

3  

≤ 𝑒

−
𝑛
2
∗(
62𝑛𝑙𝑛(𝑛)

𝑛2
)

3  

≤ 𝑒−ln(𝑛) 

≤
1

𝑛
 

as the exercise wanted. 
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For a handwritten solution (slightly different, more compact):  
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14.9 EXAM OF 13-09-2023 

  
Quoting the theory here (same exercise): 
Initially, 𝑑𝑒𝑝𝑡ℎ(𝑥) = 0 ∀𝑥. 𝑑𝑒𝑝𝑡ℎ(𝑥) can only increase because of a Union in which the root of the tree 
of 𝑥 points to another root (depth increases by 1 by construction). This happens only when the tree of 
𝑥 gets merged to a tree of size not smaller (at least as big) ⇒ when the depth of 𝑥 increases, the size of 
the tree of 𝑥 at least doubles. 

- How many times can this happen?  
o ≤ log2 𝑛 times (at most) 

▪ therefore the depth of 𝑥 cannot increase more than log2 𝑛 times 
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A problem 𝐴 (pre/post processing has to take at most polynomial time – has to be efficient) reduces in 
polynomial time to problem 𝐵 (𝐴 ≤𝑝 𝐵) if there exist a polynomial time algorithm that transforms an 
arbitrary input instance 𝑎 of 𝐴 into an input instance 𝑏 of 𝐵 such that: 

1) 𝑎 is a YES instance of 𝐴 ⇒ 𝑏 is a YES instance of 𝐵 
2) 𝑏 is a YES instance of 𝐵 ⇒ 𝑎 is a YES instance of 𝐴 

 

 

 

 

a) A fast algorithm to return a maximal independent set in the given graph 𝐺 = (𝑉, 𝐸) can be the 
following greedy approach: 

• Start with an empty set 𝑆. 
• Iterate through the vertices 𝑣 in 𝑉. 
• For each vertex 𝑣, if adding 𝑣 to 𝑆 does not violate the independence condition (i.e., 𝑆 ∪ {𝑣} is 

an independent set), then add 𝑣 to 𝑆. 
• Return the set 𝑆 as the maximal independent set. 

This greedy algorithm has a time complexity of 𝑂(𝑉 + 𝐸) since it iterates through all vertices and 
checks the independence condition for each vertex, which can be done in 𝑂(𝑑𝑒𝑔(𝑣)) time. Another 
approach I was suggested would be to run DFS, and checking connected components, if there are as 
many components as the number of vertices in 𝑉 ∖ 𝑆 then it's a maximal independent set 

b) Recall “maximal” cannot be increased and it’s different from maximum. An example of the concept 
is a star graph with one central node connected to 𝑛 leaf nodes. 

• The maximum independent set would include all the leaf nodes, because none of them are 
connected to each other. So, if you have a star graph with n leaf nodes, the maximum 
independent set would be of size 𝑛 

• However, a maximal independent set could be just the central node. Once you include the 
central node in the set, you can’t include any of the leaf nodes because they are all connected 
to the central node. So, this maximal independent set would be of size 1, which is much 
smaller than the maximum independent set 

Consider as simple example the star graph: 

- A maximal independent set can be just the center alone. This set is maximal because adding 
any vertex to the set formed only by the central vertex would violate the independence 
property 

- A maximum independent set contains all of the other vertices instead, so it includes all the 
outer vertices and none of the edges within the set violate the independence property 
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Recalling the analysis of Randomized QuickSort: the event 𝐸 can be characterized as “in the first 𝑙 =
log4

3

(𝑛) nodes of 𝑃 there have been < log4
3

(𝑛2) lucky choices”. We are studying this specific event: 

- 𝑋𝑖 , 1 ≤ 𝑖 ≤ 𝑙 = log4
3

(𝑛2) 

- 𝑋𝑖 = 1 if at the 𝑖𝑡ℎ vertex of 𝑃 there is a lucky choice of the pivot 

- Pr(𝑋𝑖 = 1) =
1

2
 ∀𝑖 

- 𝑋𝑖  are independent 

We want the probability of 𝑃 (∑ 𝑋𝑖 < log4
3

(𝑛2)𝑙
𝑖=1 ) to bound 𝑋 = ∑ 𝑋𝑖

𝑙
𝑖=1 . Given 𝑋 = ∑ 𝑋𝑖

𝑙
𝑖=1 , its 

expected value is as follows: 

𝜇 = 𝐸[𝑋] = 𝐸[∑𝑋𝑖] =∑𝐸[𝑋𝑖] =∑
1

2
=
1

2
∗ 𝑙 =

1

2
log4

3

(𝑛2)

𝑙

𝑖=1

𝑙

𝑖=1

𝑙

𝑖=1

 

Now, let’s apply the following Chernoff bound (the first): 

Pr(𝑋 < (1 − 𝛿)𝜇) < 𝑒
−𝜇𝛿2

2 , 0 < 𝛿 ≤ 1  

↓ 

(1 − 𝛿)𝜇 = log4
3

(𝑛2) 

(1 − 𝛿)
1

2
log4

3

(𝑛2) = log4
3

(𝑛2) 

(1 − 𝛿) log4
3

(𝑛2) = 2 log4
3
(𝑛2) 

(1 − 𝛿) = 2 
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−𝛿 = 1 

𝛿 = −1 

We then apply the Chernoff lemma as follows: 

Pr (𝑋 < log4
3

(𝑛)) < 𝑒
−log(

4
3
)(𝑛2) 

= 𝑒
−
𝑙𝑛(𝑛2)

𝑙𝑛(
4
3
)  

= (𝑒−𝑙𝑛(𝑛
2))

1

ln (
4
3
) 

= (
1

𝑛2
)

1

ln(
4
3
)
≃3,47

= (
1

𝑛2
)
3

= 

= (
1

𝑛2
)
3

= (𝑛−2)3 = 𝑛−6 =
1

𝑛6
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14.10 EXAM OF 02-02-2024 
 

 

 

 

 

 

 

 

 

In Union by Rank(or size), when merging two sets, the root of the tree with the smaller rank (or size) 
becomes a child of the root of the tree with the larger rank. This keeps the tree shallow. 
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(a) NP-Hard 

(b) 𝑂(𝑛3) 

(c) NP-Hard 

(d) 𝑂(𝑛 ∗ 𝑚) 

 
Given a complete, undirected (𝑐(𝑢, 𝑣) = 𝑐(𝑣, 𝑢) = symmetric) graph 𝐺 = (𝑉, 𝐸) and a function 𝑤:𝐸 →
ℝ+, output a tour 𝑇 ⊆ 𝐸 (i.e. a cycle that passes through every vertex exactly once) minimizing 
∑ 𝑤(𝑒)𝑒∈𝑇 . Collectively: 

𝑇 ⊆ 𝐸 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 ∑𝑤(𝑒)

𝑒∈𝑇

 

We can describe a 2-approximation algorithm where we can find a tour that is no longer than twice the 
shortest tour. Recall Metric TSP is the problem where all weights respect triangle inequality. 
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A popular approx-algo to solve this problem is the following: 

- Use the most similar problem to Metric TSP → MST (connect all distances with minimal cost 
employing a fast/simple algorithm = Prim/Kruskal 
 

- Create a list of visited vertices, performing a preorder traversal and visiting every vertex 
 

- Construct an Hamiltonian cycle by skipping any vertex that has already been visited in the 
walk, effectively "shortcutting" back to the next unvisited city in the preorder list 
 

o This step is valid and maintains the tour's validity due to the metric property (triangle 
inequality), which ensures that shortcutting does not increase the overall tour length 

To do so, we define the following algorithm: 

procedure 𝐴𝑝𝑝𝑟𝑜𝑥_𝑀𝑒𝑡𝑟𝑖𝑐_𝑇𝑆𝑃(𝐺):  

 𝑉 = {𝑣1, 𝑣2, … 𝑣𝑛} 

 𝑟 = 𝑣1 //𝑟𝑜𝑜𝑡 𝑓𝑟𝑜𝑚 𝑤ℎ𝑖𝑐ℎ 𝑃𝑟𝑖𝑚 𝑖𝑠 𝑟𝑢𝑛 

 𝑇∗ = 𝑃𝑟𝑖𝑚(𝐺, 𝑟) // 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑎𝑛 𝑀𝑆𝑇 𝑇 𝑓𝑟𝑜𝑚 𝐺 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑟𝑜𝑜𝑡 𝑟 

 ⟨𝑣𝑖1 , 𝑣𝑖2 , … 𝑣𝑖𝑛⟩  = 𝐻
′ = 𝑃𝑅𝐸𝑂𝑅𝐷𝐸𝑅(𝑇∗, 𝑟)  

// 𝑙𝑖𝑠𝑡𝑠 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑒𝑒 𝑖𝑛 𝑎𝑛 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑓𝑎𝑠ℎ𝑖𝑜𝑛 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑎 𝑝𝑟𝑒𝑜𝑟𝑑𝑒𝑟 𝑤𝑎𝑙𝑘 

 return ⟨𝐻′, 𝑣𝑖1⟩ ≥ 𝐻 // 𝑏𝑎𝑠𝑖𝑐𝑎𝑙𝑙𝑦, 𝑐𝑙𝑜𝑠𝑒 𝑡ℎ𝑒 𝑐𝑦𝑐𝑙𝑒 𝑎𝑛𝑑 𝑟𝑒𝑡𝑢𝑟𝑛 𝑖𝑡 

On the approximation ratio, some comments: 

- The weight of the MST is a lower bound for the weight of any tour since any tour containing all 
cities must at least connect them all 
 

- The shortcut tour created by the preorder walk and subsequent shortcutting can at most 
double the length of the MST, because each edge of the MST is traversed at most twice (once 
going to a leaf node and possibly once returning) 
 

- Thus, the total length of the tour obtained by this algorithm is at most twice the length of the 
optimal tour, giving it a 2-approximation factor  
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Recalling the analysis of Randomized QuickSort: the event 𝐸 can be characterized as “in the first 𝑙 =
log4

3

(𝑛) nodes of 𝑃 there have been < log4
3

(𝑛2) lucky choices”. We are studying this specific event: 

- 𝑋𝑖 , 1 ≤ 𝑖 ≤ 𝑙 = log4
3

(𝑛2) 

- 𝑋𝑖 = 1 if at the 𝑖𝑡ℎ vertex of 𝑃 there is a lucky choice of the pivot 

- Pr(𝑋𝑖 = 1) =
1

2
 ∀𝑖 

- 𝑋𝑖  are independent 

We want the probability of 𝑃 (∑ 𝑋𝑖 < log4
3

(𝑛2)𝑙
𝑖=1 ) to bound 𝑋 = ∑ 𝑋𝑖

𝑙
𝑖=1 . Given 𝑋 = ∑ 𝑋𝑖

𝑙
𝑖=1 , its 

expected value is as follows: 

𝜇 = 𝐸[𝑋] = 𝐸[∑𝑋𝑖] =∑𝐸[𝑋𝑖] =∑
1

2
=
1

2
∗ 𝑙 =

1

2
log4

3

(𝑛2)

𝑙

𝑖=1

𝑙

𝑖=1

𝑙

𝑖=1

 

Now, let’s apply the following Chernoff bound (the first): 

Pr(𝑋 < (1 − 𝛿)𝜇) < 𝑒
−𝜇𝛿2

2 , 0 < 𝛿 ≤ 1  

↓ 

(1 − 𝛿)𝜇 = log4
3

(𝑛2) 

(1 − 𝛿)
1

2
log4

3

(𝑛2) = log4
3

(𝑛2) 

(1 − 𝛿) log4
3

(𝑛2) = 2 log4
3
(𝑛2) 
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(1 − 𝛿) = 2 

−𝛿 = 1 

𝛿 = −1 

We then apply the Chernoff lemma as follows: 

Pr (𝑋 < log4
3

(𝑛)) < 𝑒
−log(

4
3
)(𝑛2) 

= 𝑒

−
𝑙𝑛(𝑛2)

𝑙𝑛(
4
3
)  

= (𝑒−𝑙𝑛(𝑛
2))

1

ln (
4
3
) 

= (
1

𝑛2
)

1

ln(
4
3
)
≃3,47

 

= (
1

𝑛2
)
3

= (𝑛−2)3 = 𝑛−6 =
1

𝑛6
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To expand a bit on the solution: 

Here we have already Pr(𝑋𝑖 = 1) =
6 ln(𝑛)

𝑛
 and we need to find 𝜇 = 𝐸[𝑋] = 𝐸[∑ 𝑋𝑖] = 𝑛 ∗

6 ln(𝑛)

𝑛
=𝑛

𝑖=1

6ln (𝑛). Now, we find 𝛿: 

(1 + 𝛿)𝜇 = 10ln (𝑛) 

(1 + 𝛿)6 ln(𝑛) = 10 ln(𝑛) 

(1 + 𝛿) =
5

3
 



214  Advanced Algorithms Simple (for real) 
 

Written by Gabriel R. 

𝛿 =
2

3
 

Now, we use the bound: 

Pr(𝑋 > 10 ln(𝑛)) = Pr(𝑋 > (1 + 𝛿)𝜇) = Pr (𝑋 > (1 +
2

3
) 𝜇) 

< 𝑒−
6 ln(𝑛)
2

 ∗ 
4
9 

< 𝑒−
4
3
ln(𝑛) 

< 𝑒ln(𝑛)
−
4
3  

< 𝑛−
4
3 

=
1

𝑛
4
3

 

Which is then verified for the constant 𝑐 = 4

3
, 𝑐 > 0 as showed.  
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14.12 EXAM OF 29-06-2020 
 
(Note: basically this entire file was translated into English and put as example of exam exercises every 
year since 2021-2022, since when Scquizzato became the only teacher of this course) 
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Why this computation? The following explains it exactly: 

So, here, we have to first consider 𝑋𝑖. We know they are independent. Now, we simply need to find the 

expected value. We already have here the probabilty of success given by Pr(𝑋𝑖 = 1) =
1

4𝑒
. This applies 

for all𝑛 events since they are independent so: 

𝜇 = 𝐸[𝑋] = 𝐸[∑𝐸[𝑋𝑖] = 𝑛 ∗
1

4𝑒
=
𝑛

4𝑒

𝑛

𝑖=1

 

Now, we find 𝛿 and this is done according to value we have to bound, given by the exercise or explicitly 

told here like 𝑛
2

: 

(1 + 𝛿)𝜇 =
𝑛

2
 

(1 + 𝛿)
𝑛

4𝑒
=
𝑛

2
 

(1 + 𝛿)
𝑛

2𝑒
= 𝑛 

(1 + 𝛿)𝑛 = 2𝑒(𝑛) 

(1 + 𝛿) = 2𝑒 

𝛿 = 2𝑒 − 1  

Now that we found 𝛿, let’s plug it in back in the original bound: 

Pr(1 + 𝛿) 𝜇 < (
(𝑒𝛿)

(1 + 𝛿)(1+𝛿)
)

𝜇

 

= Pr (𝑋 > (1 + 2𝑒 − 1)
𝑛

4𝑒
) ≤ 

≤ (
𝑒2𝑒−1

(1 + 2𝑒 − 1)(1+2𝑒−1)
)

𝑛
4𝑒

 

≤ (
𝑒2𝑒−1

(2𝑒)(2𝑒)
)

𝑛
4𝑒

 

≤ (
𝑒2𝑒 ∗ 𝑒−1

22𝑒 ∗ (𝑒2𝑒)
)

𝑛
4𝑒

 

≤ (
1

𝑒
)

𝑛
4𝑒
∗ (

1

22𝑒
)

𝑛
4𝑒

 

≤ (
1

𝑒−4𝑒
)
𝑛

∗ (
1

2
2𝑒
4𝑒

)

𝑛

 

≤ (
1

𝑒−4𝑒
)
𝑛

∗ (
1

2
1
2

)

𝑛
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≤ (
1

𝑒−4𝑒
)
𝑛

∗ (
1

√2
)
𝑛

 

To infinity, it dominates the second factor, so we’d have ( 1
√2
)
𝑛
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14.13 EXAM OF 15-07-2020 

 
Here, 𝐴𝑝𝑝𝑟𝑜𝑥_𝑇_𝑇𝑆𝑃 is the older name of 𝐴𝑝𝑝𝑟𝑜𝑥_𝑀𝑒𝑡𝑟𝑖𝑐_𝑇𝑆𝑃, so it’s useful to know the below graph.  

  

Dijkstra: finds the shortest paths to 
all vertices starting from a vertex 
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To expand properly on the solution – also, if you see some exams ago, we see that this is basically the 
same thing with bins, but also union bound needs to be applied here.  

Let 𝑋1 = 1, 2,…𝑚 (with 𝑚 = 6𝑛𝑙𝑛(𝑛) jobs and 𝑋𝑖 = 1 when the 𝑖𝑡ℎ job gets assigned to processor 𝑝. 

Here, Pr(𝑋𝑖 = 1) =
1

𝑛
 with 𝑋𝑖  independent between each other. The number of jobs received by the 

processor 𝑝 is then 𝑋 = ∑ 𝑋𝑖
𝑚
𝑖=1  given it holds for each processor. 

Now, find 𝜇 = 𝐸[𝑋] = ∑ 𝐸[𝑋𝑖] = 𝑚 ∗
1

𝑛
=
6𝑛(ln(𝑛))

𝑛
= 6 ln(𝑛)𝑚

𝑖=1  

Then, we find 𝛿: 

To apply the Chernoff bound, we set 12ln (𝑛) equal to (1 + 𝛿) so: 

(1 + 𝛿)𝜇 = 12 ln(𝑛) 

(1 + 𝛿)6 ln(𝑛) = 12 ln(𝑛) 

(1 + 𝛿) = 2 

𝛿 = 1 

Now, we apply the bound: 

Pr(𝑋 > (1 + 𝛿)𝜇) ≤ 𝑒
−𝜇𝛿2

3  

Pr(𝑋 > 1 + 1) 6 ln(𝑛)) ≤ 𝑒−
6ln(𝑛)
3  

≤ 𝑒−2 ln(𝑛) 

Recall the property of exponentials and logarithms there, so: 

≤ 𝑒ln(𝑛
−2) 

Recall from the exercise hint that ln(𝑛) = log𝑒(𝑛) 

So, we have:  

𝑒ln(n
−2) =

1

𝑛2
 

as the exercise wanted. We showed with high probability the bin with maximum load containing at 
most 12ln (𝑛) jobs. We applied this for one bin, so we have to use now the union bound; simply use 

the previous result multiplying by all jobs, so 𝑚 = 𝑛

6𝑛(ln(𝑛))
: 𝑛

6 ln(𝑛)
∗
1

𝑛2
=

1

6𝑛𝑙𝑛(𝑛)
 

To characterize the no job will exceed, use the complement event → 1 − 1

6𝑛𝑙𝑛(𝑛)
= 1 − 𝑜 (

1

𝑛
) 
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14.14 EXAM OF 31-08-2020 
 
(Note: some exercises of this one was translated into English and put as examples of exam exercises 
every year of this course since 2021-2022, when only Scquizzato is teaching this course – I put here 
the English versions of said exercises) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Second property holds thanks to the Handshaking lemma, shown in the beginning of this course as 
graph property.   
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First exercise is a variant found within the CLRS book, second one comes straight from the theory.  
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14.15 OLDER EXERCISES 
 

This includes exercises found from old lessons and/or notes in italian and represents a complete 
translation or solution for all of them. At last to properly conclude this file. 

1. Given a tree with 𝑛 nodes has 𝑚 = 𝑛 − 1 edges, show that a connected graph with 𝑛 nodes has 𝑚 ≥
𝑛 − 1 edges. 

Solution 

Reason by contradiction and suppose we have a connected graph 𝐺 with 𝑛 nodes and fewer than 𝑛 −
1 edges. Since 𝐺 is connected, there exists at least one spanning tree (subgraph with all the vertices 
as the original graph). So, with 𝑚′ the number of edges in 𝑇, by definition of a tree we would have 𝑚′ =
𝑛 − 1. 

Considering we have a 𝑇 as subgraph of 𝐺, it would have as number of edges a number greater than or 
equal to the number of edges in 𝑇. 

Let 𝑚 be the number of edges in 𝐺. Then, 𝑚 ≥ 𝑚′ = 𝑛 − 1. This contradicts our initial assumption that 
𝐺 has fewer than 𝑛 − 1 edges. 

Therefore, a connected graph with 𝑛 nodes must have at least 𝑛 − 1 edges. This proof also shows that 
a connected graph with n nodes and exactly 𝑛 − 1 edges is a tree. 

In summary: 

• A tree with n nodes has exactly 𝑛 − 1 edges. 

• A connected graph with n nodes must contain at least one spanning tree. 

• A spanning tree of a graph with 𝑛 nodes has 𝑛 − 1 edges. 

• Therefore, a connected graph with 𝑛 nodes must have at least 𝑛 − 1 edges. 

2. Consider a labyrinth 𝐿 that has a single entry point 𝑠 and within which is hidden the terrible 
Minotaur. Engineer Theseus must enter 𝐿, find the Minotaur, kill it, and exit 𝐿. Find an appropriate 
representation of the labyrinth as a graph and show how, by exploiting the DFS algorithm, ing. Theseus 
can successfully accomplish his mission. Assume that the labyrinth is connected, in the sense that 
every point in it can be reached from 𝑠. 

The following peculiarities can be added to the nodes of the graph-maze 𝐿 =  (𝑉, 𝐸): 

- 𝑠 ∈ 𝐿 and the gateway node, i.e., the entry and exit node from the maze 𝐿 
- ∀ 𝑣 ∈ 𝐿: 

a. 𝐿𝑉[𝑣]. ℎ𝑎𝑠𝑀𝑖𝑛𝑜𝑡𝑎𝑢𝑟 = 𝑡𝑟𝑢𝑒 if there is Minotaur at that node 
b. 𝐿𝑉[𝑣]. ℎ𝑎𝑠𝑀𝑖𝑛𝑜𝑡𝑎𝑢𝑟 = 𝑓𝑎𝑙𝑠𝑒 otherwise 

∃! 𝑣 ∈ 𝐿: 𝐿𝑉[𝑣]. ℎ𝑎𝑠𝑀𝑖𝑛𝑜𝑡𝑎𝑢𝑟 = 𝑡𝑟𝑢𝑒, which means there is only a Minotaur inside of the labyrinth 𝐿. 
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Solution 

𝑀𝑖𝑛𝑜𝑡𝑎𝑢𝑟𝐷𝐹𝑆(𝐺, 𝑣)  

𝐿𝑉 [𝑣]. 𝐼𝐷 ←  1  

𝑖𝑓 (𝐿𝑉 [𝑣]. ℎ𝑎𝑠𝑀𝑖𝑛𝑜𝑡𝑎𝑢𝑟 = 𝑡𝑟𝑢𝑒)  

𝑘𝑖𝑙𝑙𝑇ℎ𝑒𝑀𝑖𝑛𝑜𝑡𝑎𝑢𝑟()  

return 𝑡𝑟𝑢𝑒  

forall 𝑒 ∈ 𝐺. 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠(𝑣): do  

𝑖𝑓(𝐿𝐸[𝑒]. 𝑙𝑎𝑏𝑒𝑙 =  𝑛𝑢𝑙𝑙) 𝑡ℎ𝑒𝑛  

𝑤 ← 𝐺. 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒(𝑣, 𝑒)  

𝑖𝑓(𝐿𝑉 [𝑤]. 𝐼𝐷 =  0) 𝑡ℎ𝑒𝑛  

𝐿𝐸[𝑒]. 𝑙𝑎𝑏𝑒𝑙 ←  𝐴𝑅𝐼𝐴𝐷𝑁𝐸’𝑆 𝑅𝑂𝑃𝐸  

𝑘𝑖𝑙𝑙𝑒𝑑 = 𝐷𝐹𝑆(𝐺,𝑤)  

𝑖𝑓 (𝑘𝑖𝑙𝑙𝑒𝑑 = 𝑡𝑟𝑢𝑒)  

return 𝑡𝑟𝑢𝑒  

3. Let graph 𝐺 = (𝑉, 𝐸) be an undirected graph with 𝑘 > 1 connected components. Design an 
algorithm that adds 𝑘 − 1 edges to G to make it connected and analyze its complexity. Assume that 
you can add an edge (𝑢, 𝑣) ∉ 𝐸 in constant time by invoking the method 𝐺. 𝑎𝑑𝑑𝐸𝑑𝑔𝑒(𝑢, 𝑣).  

Solution 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝐷𝐹𝑆(𝐺, 𝑣)  

for 𝑣 ← 1 𝑡𝑜 𝑛: do  

𝐿𝑉 [𝑣]. 𝐼𝐷 ←  0  

𝑝𝑣 ← 𝑁𝐼𝐿  

for 𝑣 ← 1 𝑡𝑜 𝑛 do  

if(𝐿𝑉 [𝑣]. 𝐼𝐷 = 0) then  

𝐷𝐹𝑆(𝐺, 𝑣)   

if (𝑝𝑣 ! =  𝑁𝐼𝐿) then   

𝐺. 𝑎𝑑𝑑𝐸𝑑𝑔𝑒(𝑝𝑣, 𝑣)   

𝑝𝑣 ← 𝑣  

Correctness: The algorithm works in that it is an enrichment of 𝐷𝐹𝑆(𝐺, 𝑣) in which the variable 𝑝𝑣 
indicating the starting node of the previous connected component 𝐶𝑠−1.  

When I identify an unconnected component with starting node 𝑣, it is called 𝐷𝐹𝑆(𝐺, 𝑣): in this way I 
select all nodes in 𝐶𝑠 (∀ 𝑣 ∈ 𝐶𝑠, 𝐿𝑉[𝑣]. 𝐼𝐷 ←  1).  



226  Advanced Algorithms Simple (for real) 
 

Written by Gabriel R. 

Once 𝐷𝐹𝑆(𝐺, 𝑣) is finished, the algorithm checks if a connected component 𝐶𝑠−1 has already been 
found previously, with starting node starting 𝑝𝑣. If yes, it proceeds to connect the starting nodes of Cs 
and 𝐶𝑠−1 by calling a function 𝐺. 𝑎𝑑𝑑𝐸𝑑𝑔𝑒(𝑝𝑣, 𝑣). 

Complexity: 𝑂(𝑛 +𝑚), same as for DFS. 

4. Let be the unconnected graph 𝐺 = (𝑉, 𝐸) with n vertices and 𝑚 edges. Design an algorithm that 
counts the pairs of vertices 𝑢, 𝑣 ∈ 𝑉 such that 𝑢 and 𝑣 are reachable from each other via paths, 
analyzing their complexity. To have full score, the complexity must be 𝑂(𝑛 +𝑚) (let us recall that from 

a set of 𝐾 objects one can form 𝐾
(𝐾−1)

2
 distinct pairs). 

Solution 

The idea is to use a modified BFS to determine, for each connected component of 𝐺, its 𝐾 cardinality 

by adding the value 𝐾
(𝐾 − 1)

2
 to the count of pairs of vertices reachable one from each other. 

Suppose we have modified 𝐵𝐹𝑆(𝐺, 𝑣) by defining a cardinality variable initialized to 0 that is 
incremented each time a vertex is visited and whose value is returned in the output. 

Algorithm: 𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝑃𝑎𝑖𝑟𝑠(𝐺) 

Input: undirected and unconnected graph 𝐺 = (𝑉, 𝐸) 

Output: Number of pairs u, v ∈ V reachable from each other 

𝑐𝑜𝑢𝑛𝑡 ← 0  

for 𝑣 ←  1 𝑡𝑜 𝑛: do  

𝑖𝑓 (𝐿𝑉 [𝑣]. 𝐼𝐷 =  0) 𝑡ℎ𝑒𝑛  

𝐾 ←  𝐵𝐹𝑆(𝐺, 𝑣)  

𝑐𝑜𝑢𝑛𝑡 ←  𝑐𝑜𝑢𝑛𝑡 +
𝐾(𝐾−1)

2
  

return 𝑐𝑜𝑢𝑛𝑡  

Analysis 

The correctness of the algorithm is immediate (given we simply use BFS and then add a constant 
number of objects), and the changes made to BFS do not alter its complexity, leaving it intact at 𝑂(𝑛 +
𝑚). 

5. Let be the directed and connected graph 𝐺 = (𝑉, 𝐸) in which each vertex has degree exactly 𝑐, with 
𝑐 >  2. Let us consider the execution of 𝐵𝐹𝑆(𝐺, 𝑠) from an arbitrary vertex 𝑠 ∈  𝑉 . Prove by induction 
on i that the level 𝐿𝑖 generated by 𝐵𝐹𝑆(𝐺, 𝑠) contains ≤  𝑐 ∗ (𝑐 −  1)𝑖−1 vertices ∀ 𝑖 ≥  0. 

Base Case: 𝑖 = 0 contains only 1 vertex. 

Rec. step: Let us fix i ≥ 1 and assume, as an inductive assumption, that |𝐿𝐽| ≤ 𝑐 ∗ (𝑐 − 1)𝑗−1 ∀0 ≤ 𝑗 ≤
𝑖 vertices of level 𝐿𝑖+1 are all adjacent to vertices of level i, and since each vertex 𝑣 ∈ 𝐿𝑖 has 𝑐 
neighbors, of which, however, at least one is in the level 𝐿𝑖−1. We conclude that: 

|𝐿𝑖+1| ≤ (𝑐 − 1) ∗ |𝐿𝑖| ≤ (𝑐 − 1) ∗ 𝑐 ∗ (𝑐 − 1)
𝑖−1 = 𝑐 ∗ (𝑐 − 1)𝑖  
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6. The maximum spanning tree of a graph is an ST of max cost, that is, whose sum ∑ 𝑤(𝑒)𝑒∈𝑇  is max. 
Give an algorithm for this problem that uses an algorithm as a procedure to solve the MST problem. 

Solution 

Algorithm: 

- multiplies the weights of all sides by −1. 
- applies Kruskal's algorithm 

7. Consider a directed graph 𝐺 = (𝑉, 𝐸) with weights on nonnegative sides. Under what conditions is 
there a unique shortest path from 𝑠 ∈ 𝑉 to 𝑡 ∈ 𝑉 ? 

- When all weights are positive and distinct integers 
- When all weights are powers of 2 distinct 
- When it is worth 1 and the graph contains no direct cycles 

Solution 

The second one is the correct answer: Two sums of distinct powers of 2 can never be the same 
number (consider that the numbers are written in binary). For 1 and 3 there are counterexamples. 

8. Consider a directed graph 𝐺 = (𝑉, 𝐸) with weights on nonnegative sides. Let the bottleneck of path 
as the maximum weight of its sides (instead of the sum of the weights on all sides). Modify Dijkstra's 
algorithm to compute, ∀ 𝑣 ∈ 𝑉 , the smallest bottleneck on all possible paths from a starting node 𝑠 to 
v. The algorithm must have complexity 𝑂(𝑚 ∗ 𝑛). 

Solution 

Replace, in the 1st in the 3rd line of the while loop of Dijkstra's algorithm,𝑙𝑒𝑛(𝑣) + 𝑙(𝑣∗,𝑤∗) with 

max{𝑙𝑒𝑛(𝑣), 𝑙(𝑣,𝑤)} + 𝑙𝑣∗,𝑤∗  with max {𝑙𝑒𝑛(𝑣∗}, 𝑙(𝑣∗,𝑤∗)} 

𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎(𝐺, 𝑠)  

 𝑋 ← {𝑠} 

 𝑙𝑒𝑛(𝑠) ← 0 

𝑙𝑒𝑛(𝑣) ← +∞ ∀ 𝑣 ≠ 𝑠  

while 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑣, 𝑤 𝑤𝑖𝑡ℎ 𝑣 ∈ 𝑋,𝑤 ∉ 𝑋: do  

 (𝑣∗, 𝑤∗) ← 𝑠𝑢𝑐ℎ 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 max {𝑙𝑒𝑛(𝑣), 𝑙(𝑣,𝑤)} 

 𝑋 ← 𝑋 ∪ 𝑤∗ 

 𝑙𝑒𝑛(𝑤∗) = max {𝑙𝑒𝑛(𝑣∗), 𝑙(𝑣∗,𝑤∗)} 

9. Let 𝐺𝑐 be the complement graph of 𝐺 (contains exactly those sides that are not present in 𝐺). If 𝑉∗ is 
a vertex cover of 𝐺 then it holds that 𝑉 ∖ 𝑉∗ is a clique of maximum size in 𝐺𝑐(clique: the subgraph 
largest complete there is). Is it possible to approximate the clique problem by applying a 2-
approximation algorithm for vertex cover? 
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Solution 

No, in general the reduction functions between problem don’t preserve their approximation factor. In 

this case, the size of the clique of maximum size in 𝐺 is |𝑐𝑚𝑎𝑥| =
n

2
. So in 𝐺𝑐: |𝑉∗| = 𝑛 − 𝑛

2
=
𝑛

2
. We 

apply 𝐴𝑝𝑝𝑟𝑜𝑥_𝑉𝑒𝑟𝑡𝑒𝑥_𝐶𝑜𝑣𝑒𝑟(𝐺𝑐) → 𝑉′. It could be |𝑉′| = 𝑛 so 2|𝑉∗|. So, the clique of size 𝑛 − 𝑛 = 0 is 
returned and does not approximate for any 𝜌(𝑛). 

10. The problem is: Given 𝐺 = (𝑉, 𝐸) find a loop if it exists. Design and analyse an algorithm based on 
BFS to solve the problem with complexity 𝑂(𝑛 +𝑚). Hint: use the fact that there exists a loop in 𝐺 if 
and only if the execution of BFS labels one edge as CROSS EDGE. 

Solution 

Without loss of generality, assume the graph is connected (if not, do the following for each connected 
component). Pick an arbitrary vertex as root and do a BFS, while maintaining a BFS tree. 

The BFS tree initially contains the root and at each point, when you encounter an edge to a new vertex, 
the new vertex is added to the tree and the edge is added between the new vertex and the parent. If at 
any point you encounter an edge from a node to a seen vertex, then there is a cycle in the graph, and 
you can return the cycle by tracing the path from each end point of the latest edge backwards in the 
BFS tree till they meet (linear time) and displaying it in the correct order. If the BFS ends without 
incident, there is no cycle. BFS runs in linear time on the edges/vertices, as each edge/vertex is visited 
only once. 

procedure 𝐵𝐹𝑆(𝐺, 𝑠)  

𝑣𝑖𝑠𝑖𝑡(𝑠)  

𝐿𝑉[𝑠]. 𝐼𝐷 = 1  

𝐶𝑟𝑒𝑎𝑡𝑒 𝑎 𝑠𝑒𝑡 𝐿0 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑠  

𝑖 = 0  

while (! 𝐿𝑖 . 𝑖𝑠𝐸𝑚𝑝𝑡𝑦()) do:  

𝐶𝑟𝑒𝑎𝑡𝑒 𝑎 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡 𝑜𝑓𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝐿𝑖+1  

for each 𝑣 ∈ 𝐿𝑖 do:  

for each 𝑒 ∈ 𝐺. 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠(𝑣) do:  

if 𝐿𝐸[𝑒]. 𝑙𝑎𝑏𝑒𝑙 = 𝑛𝑢𝑙𝑙 then  

𝑤 = 𝐺. 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒(𝑣, 𝑒)  

if 𝐿𝑣[𝑤]. 𝐼𝐷 = 0 then  

 𝐿𝐸[𝑒]. 𝑙𝑎𝑏𝑒𝑙 = 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 𝐸𝐷𝐺𝐸 

𝑣𝑖𝑠𝑖𝑡 𝑤   

𝐿𝑉[𝑤]. 𝐼𝐷 = 1   

𝐿𝑉[𝑣]. 𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑢 // 𝑆𝑒𝑡 𝑡ℎ𝑒 𝑝𝑎𝑟𝑒𝑛𝑡 𝑜𝑓 𝑣 𝑎𝑠 𝑢 

𝑎𝑑𝑑 𝑤 𝑖𝑛 𝐿𝑖+1  
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else   

 𝐿𝐸[𝑒]. 𝑙𝑎𝑏𝑒𝑙 = 𝐶𝑅𝑂𝑆𝑆 𝐸𝐷𝐺𝐸  

// 𝐹𝑜𝑢𝑛𝑑 𝑎 𝑐𝑦𝑐𝑙𝑒, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑐𝑦𝑐𝑙𝑒  

𝑟𝑒𝑡𝑢𝑟𝑛 𝑔𝑒𝑡_𝑐𝑦𝑐𝑙𝑒(𝑢, 𝑣, 𝑒)  

𝑖 = 𝑖 + 1  

𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑔𝑒𝑡_𝑐𝑦𝑐𝑙𝑒(𝑢, 𝑣, 𝑒):  

    // 𝑇𝑟𝑎𝑐𝑒 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑢 𝑡𝑜 𝑣 𝑖𝑛 𝑡ℎ𝑒 𝐵𝐹𝑆 𝑡𝑟𝑒𝑒  

    𝑝𝑎𝑡ℎ𝑢  =  []  

    𝑐𝑢𝑟𝑟 =  𝑢  

    𝑤ℎ𝑖𝑙𝑒 𝑐𝑢𝑟𝑟 ! =  𝑣:  

        𝑝𝑎𝑡ℎ𝑢. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑐𝑢𝑟𝑟)  

        𝑐𝑢𝑟𝑟 = 𝐿𝑉[𝑐𝑢𝑟𝑟]. 𝑝𝑎𝑟𝑒𝑛𝑡  

    𝑝𝑎𝑡ℎ𝑢. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑣)  

    𝑝𝑎𝑡ℎ𝑢. 𝑟𝑒𝑣𝑒𝑟𝑠𝑒()  

    // 𝑇𝑟𝑎𝑐𝑒 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑣 𝑡𝑜 𝑢 𝑖𝑛 𝑡ℎ𝑒 𝐵𝐹𝑆 𝑡𝑟𝑒𝑒  

    𝑝𝑎𝑡ℎ𝑣 = []  

    𝑐𝑢𝑟𝑟 = 𝑣  

    𝑤ℎ𝑖𝑙𝑒 𝑐𝑢𝑟𝑟 ! =  𝑢:  

        𝑝𝑎𝑡ℎ𝑣 . 𝑎𝑝𝑝𝑒𝑛𝑑(𝑐𝑢𝑟𝑟)  

        𝑐𝑢𝑟𝑟 =  𝐿𝑉[𝑐𝑢𝑟𝑟]. 𝑝𝑎𝑟𝑒𝑛𝑡   

    𝑝𝑎𝑡ℎ_𝑣. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑢)  

    // 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑡ℎ𝑒 𝑐𝑦𝑐𝑙𝑒 𝑏𝑦 𝑐𝑜𝑚𝑏𝑖𝑛𝑖𝑛𝑔 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑝𝑎𝑡ℎ𝑠 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑒𝑑𝑔𝑒 𝑒  

    𝑐𝑦𝑐𝑙𝑒 =  𝑝𝑎𝑡ℎ𝑢 + [𝑒] + 𝑝𝑎𝑡ℎ𝑣[1: ]  

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑦𝑐𝑙𝑒  

11. Let 𝐺 = (𝑉, 𝐸) be a disconnected graph with 𝑛 vertices and 𝑚 edges. Design an algorithm to count 
the number of pairs 𝑢, 𝑣 ∈ 𝑉 such that 𝑢 and 𝑣 are connected with a path. Analyse the complexity of 
the algorithm. There is a solution with complexity 𝑂(𝑛 +𝑚). 

Solution 

To count the number of pairs, we simply need to count the number of edges connected between each 
traversal done by the algorithm, may it be DFS or BFS. 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡𝑃𝑎𝑖𝑟𝑠(𝐺, 𝑉):  

    𝑐𝑜𝑢𝑛𝑡 =  0  // 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠  
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    𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑣 𝑖𝑛 𝑉:  

        𝑖𝑓 𝐿𝑉[𝑣]. 𝐼𝐷 =  0:  // 𝐼𝑓 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 𝑖𝑠 𝑛𝑜𝑡 𝑣𝑖𝑠𝑖𝑡𝑒𝑑  

            𝑣𝑖𝑠𝑖𝑡(𝑣)       // 𝑀𝑎𝑟𝑘 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 𝑎𝑠 𝑣𝑖𝑠𝑖𝑡𝑒𝑑  

            𝑐𝑜𝑢𝑛𝑡 +=  𝐷𝐹𝑆(𝐺, 𝑣)  −  1  // 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑐𝑜𝑢𝑛𝑡 𝑏𝑦 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑓𝑟𝑜𝑚 𝑣  

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑢𝑛𝑡  

𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝐷𝐹𝑆(𝐺, 𝑣):  

    𝑣𝑖𝑠𝑖𝑡(𝑣)  

    𝐿𝑉[𝑣]. 𝐼𝐷 =  1  

    // 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑐𝑜𝑢𝑛𝑡 𝑡𝑜 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑒𝑟𝑡𝑒𝑥  

    𝑐𝑜𝑢𝑛𝑡 =  1    

    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒 𝑖𝑛 𝐺. 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠(𝑣):  

        𝑖𝑓 𝐿𝐸[𝑒]. 𝑙𝑎𝑏𝑒𝑙 =  𝑛𝑢𝑙𝑙:  

            𝑤 =  𝐺. 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒(𝑣, 𝑒)  

            𝑖𝑓 𝐿𝑉[𝑤]. 𝐼𝐷 =  0:  

                𝐿𝐸[𝑒]. 𝑙𝑎𝑏𝑒𝑙 =  𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 𝐸𝐷𝐺𝐸  

                // 𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑐𝑎𝑙𝑙 𝑡𝑜 𝐷𝐹𝑆  

                𝑐𝑜𝑢𝑛𝑡 +=  𝐷𝐹𝑆(𝐺,𝑤)  

        𝑒𝑙𝑠𝑒:  

            𝐿𝐸[𝑒]. 𝑙𝑎𝑏𝑒𝑙 =  𝐵𝐴𝐶𝐾 𝐸𝐷𝐺𝐸  

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑜𝑢𝑛𝑡  

12. Let 𝐺 = (𝑉, 𝐸) be a graph with 𝑛 vertices and 𝑚 edges. Develop an algorithm that returns a vertex 

𝑖 ∈ 𝑉 that can reach (with paths) ≥ 𝑛

2
 other vertices. Analyse the complexity of the algorithm. If such a 

vertex does not exist the algorithm returns null. 

Solution 

Here's the algorithm: 

1. Initialize an empty set 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 to store the vertices reachable from each vertex. 

2. For each vertex 𝑣 in 𝑉, perform a DFS traversal starting from 𝑣v to mark all reachable vertices. 

3. During each DFS traversal, keep track of the vertices reachable from 𝑣 and add them to the 
set. 

4. After completing DFS traversal for all vertices, iterate through each vertex 𝑖i and check if the 

number of vertices reachable from 𝑖 is greater than or equal to 𝑛
2

. 

5. If such a vertex 𝑖 is found, return 𝑖; otherwise, return null. 
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𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑖𝑛𝑑𝑉𝑒𝑟𝑡𝑒𝑥𝑊𝑖𝑡ℎ𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐺, 𝑉):  

    // 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑡𝑜 𝑠𝑡𝑜𝑟𝑒 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑐𝑜𝑢𝑛𝑡  

    𝑚𝑖𝑛𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
|𝑉|

2
    

    // 𝐼𝑡𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑒𝑎𝑐ℎ 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 𝑖𝑛 𝑉  

    𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑣 𝑖𝑛 𝑉:  

        // 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑡𝑜 𝑐𝑜𝑢𝑛𝑡 𝑡ℎ𝑒 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑓𝑟𝑜𝑚 𝑣  

        𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝐶𝑜𝑢𝑛𝑡 =  0  

        // 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝐷𝐹𝑆 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 𝑓𝑟𝑜𝑚 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣  

        𝐷𝐹𝑆(𝐺, 𝑣)  

        // 𝐶ℎ𝑒𝑐𝑘 𝑡ℎ𝑒 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑣𝑒𝑟𝑡𝑒𝑥 𝑤  

        𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑤 𝑖𝑛 𝑉:  

            // 𝐼𝑓 𝑤 𝑖𝑠 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝑣, 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑡ℎ𝑒 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑐𝑜𝑢𝑛𝑡  

            𝑖𝑓 𝐿_𝑉[𝑤]. 𝐼𝐷 =  1:  

                𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝐶𝑜𝑢𝑛𝑡 =  𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝐶𝑜𝑢𝑛𝑡 +  1  

        // 𝐼𝑓 𝑡ℎ𝑒 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑐𝑜𝑢𝑛𝑡 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑜𝑟 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑚𝑖𝑛𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑣  

        𝑖𝑓 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒𝐶𝑜𝑢𝑛𝑡 >=  𝑚𝑖𝑛𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦:  

            𝑟𝑒𝑡𝑢𝑟𝑛 𝑣  

    // 𝐼𝑓 𝑛𝑜 𝑠𝑢𝑐ℎ 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖𝑠 𝑓𝑜𝑢𝑛𝑑, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑢𝑙𝑙  

    𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑢𝑙𝑙  

𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝐷𝐹𝑆(𝐺, 𝑣):  

    // 𝑀𝑎𝑟𝑘 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣 𝑎𝑠 𝑣𝑖𝑠𝑖𝑡𝑒𝑑  

    𝑣𝑖𝑠𝑖𝑡(𝑣)  

    // 𝐼𝑡𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑎𝑙𝑙 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑒𝑑𝑔𝑒𝑠 𝑜𝑓 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣  

    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒 𝑖𝑛 𝐺. 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠(𝑣):  

        // 𝐺𝑒𝑡 𝑡ℎ𝑒 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑤 𝑜𝑓 𝑒𝑑𝑔𝑒 𝑒  

        𝑤 =  𝐺. 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒(𝑣, 𝑒)  

        // 𝐼𝑓 𝑣𝑒𝑟𝑡𝑒𝑥 𝑤 ℎ𝑎𝑠 𝑛𝑜𝑡 𝑏𝑒𝑒𝑛 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑦𝑒𝑡, 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝑙𝑦 𝑐𝑎𝑙𝑙 𝐷𝐹𝑆  

        𝑖𝑓 𝐿𝑉[𝑤]. 𝐼𝐷 =  0:  

            𝐷𝐹𝑆(𝐺,𝑤)  
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13. Let 𝐺 = (𝑉, 𝐸) be the (non-direct) Facebook graph in which the vertices represents profiles, and 
the edges represents friendships. Assume 𝐺 is connected (actually it is not). Define the separation 
between two profiles 𝑢 ≠ 𝑣 ∈ 𝑉 as the number of edges in the shortest path from 𝑢 to 𝑣 in 𝐺. Design 
and analyze an algorithm to determine the maximum separation between two profiles in 𝐺. 

Solution 

Here's the algorithm: 

1. Initialize a variable 𝑚𝑎𝑥𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 to store the maximum separation between two profiles. 

2. For each vertex 𝑢 in 𝑉, perform BFS traversal starting from 𝑢 to find the shortest path to all 
other vertices. 

3. During BFS traversal, maintain a distance array 𝑑𝑖𝑠𝑡[𝑣] for each vertex 𝑣, where 𝑑𝑖𝑠𝑡[𝑣] 
represents the shortest distance from 𝑢 to 𝑣. 

4. After completing BFS traversal for all vertices, iterate through each pair of profiles (𝑢, 𝑣) and 
update the maximum separation if necessary. 

5. Return the maximum separation. 

14. Can you come up with an example of a graph for which 𝐴𝑝𝑝𝑟𝑜𝑥_𝑉𝑒𝑟𝑡𝑒𝑥_𝐶𝑜𝑣𝑒𝑟 always gives a 
suboptimal solution? 

Solution 

An example of a graph for which the 𝐴𝑝𝑝𝑟𝑜𝑥_𝑉𝑒𝑟𝑡𝑒𝑥_𝐶𝑜𝑣𝑒𝑟 algorithm always yields a suboptimal 
solution is the star graph. 

A star graph consists of a central node (or vertex) connected to 𝑛 − 1 leaf nodes (where n is the total 
number of nodes in the graph). In this case, the optimal vertex cover consists of just the central node, 
as it covers all the edges connected to the leaf nodes.  

However, the 𝐴𝑝𝑝𝑟𝑜𝑥_𝑉𝑒𝑟𝑡𝑒𝑥_𝐶𝑜𝑣𝑒𝑟 algorithm works by iteratively selecting an edge, adding both its 
endpoints to the vertex cover, and removing all the edges incident to these two vertices. In a star 
graph, the algorithm would end up selecting all the leaf nodes along with the central node, yielding a 
suboptimal solution, as the optimal solution would only include the central node. 

15. Given the following graph represented by the adjacency matrix: 

 

 

 

 

a) Draw the graph 

b) Execute DFS from vertex 𝑎 and show the obtained 𝐷𝐹𝑆 tree 

c) Same as previous point but for BFS 
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Solution 

 

 

 

 

 

 

16. Given the following weighted graph, represented by an adjacency matrix: 

a) List the MST edges in the order they were determined by Kruskal’s algorithm 

b) Do the same using Prim’s algorithm 

Solution 

Given: 

 

 

 

 

We should consider for example weights on this graph in order to make it work, for example: 

 

 

 

 

 
Kruskal: {𝑔, 𝑓}, {𝑎, 𝑒}, {𝑎, 𝑐}, {𝑏, 𝑔}, {𝑐, 𝑑}, {𝑎, 𝑐}, {𝑎, 𝑓} 

Prim:{𝑎, 𝑐}, {𝑎, 𝑓}, {𝑎, 𝑒}, {𝑎, 𝑓}, {𝑏, 𝑔}, {𝑐, 𝑑} 

17. Given the following graph, show the set of edges returned by 𝐴𝑝𝑝𝑟𝑜𝑥_𝑉𝑒𝑟𝑡𝑒𝑥_𝐶𝑜𝑣𝑒𝑟(𝐺), briefly 
describing the algorithm. 

Assuming once again we may be talking here about: 
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Remember logic and pseudocode of the approx algo:  

- Choose any edge 
- Add its endpoints to the solution 
- “Remove” the covered edges 
- Repeat 

procedure 𝐴𝑝𝑝𝑟𝑜𝑥_𝑉𝑒𝑟𝑡𝑒𝑥_𝐶𝑜𝑣𝑒𝑟(𝐺)  

 𝑉′ = ∅ 

𝐸′ = 𝐸  

while E′ ≠ ∅: do  

 𝐿𝑒𝑡 (𝑢, 𝑣) 𝑏𝑒 𝑎𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑒𝑑𝑔𝑒 𝑜𝑓 𝐸′ 

 𝑉′ = 𝑉′ ∪ {𝑢, 𝑣} 

 𝐸′ = 𝐸′ ∖ {(𝑢, 𝑧), (𝑣, 𝑤)} 

 // 𝑟𝑒𝑚𝑜𝑣𝑒 𝑒𝑑𝑔𝑒𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑢 𝑎𝑛𝑑 𝑣 𝑎𝑠 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠 

return 𝑉′  

Complexity: 𝑂(𝑛 +𝑚) 

So, here we would have the part in red above. 

6) 

(a) Give matching and maximal matching definition 

(b) Show a graph in which 𝐴𝑝𝑝𝑟𝑜𝑥_𝑉𝑒𝑟𝑡𝑒𝑥_𝐶𝑜𝑣𝑒𝑟 returns a solution of cost exactly twice the optimal 
vertex cover 

A matching in a graph is a set of edges without common vertices, while a maximal matching is a 
matching which cannot be increased.  

For point (b), this was shown here. 
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